dnssec_privkey.go 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293
  1. package dns
  2. import (
  3. "crypto"
  4. "crypto/dsa"
  5. "crypto/ecdsa"
  6. "crypto/rsa"
  7. "math/big"
  8. "strconv"
  9. "golang.org/x/crypto/ed25519"
  10. )
  11. const format = "Private-key-format: v1.3\n"
  12. // PrivateKeyString converts a PrivateKey to a string. This string has the same
  13. // format as the private-key-file of BIND9 (Private-key-format: v1.3).
  14. // It needs some info from the key (the algorithm), so its a method of the DNSKEY
  15. // It supports rsa.PrivateKey, ecdsa.PrivateKey and dsa.PrivateKey
  16. func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string {
  17. algorithm := strconv.Itoa(int(r.Algorithm))
  18. algorithm += " (" + AlgorithmToString[r.Algorithm] + ")"
  19. switch p := p.(type) {
  20. case *rsa.PrivateKey:
  21. modulus := toBase64(p.PublicKey.N.Bytes())
  22. e := big.NewInt(int64(p.PublicKey.E))
  23. publicExponent := toBase64(e.Bytes())
  24. privateExponent := toBase64(p.D.Bytes())
  25. prime1 := toBase64(p.Primes[0].Bytes())
  26. prime2 := toBase64(p.Primes[1].Bytes())
  27. // Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm
  28. // and from: http://code.google.com/p/go/issues/detail?id=987
  29. one := big.NewInt(1)
  30. p1 := big.NewInt(0).Sub(p.Primes[0], one)
  31. q1 := big.NewInt(0).Sub(p.Primes[1], one)
  32. exp1 := big.NewInt(0).Mod(p.D, p1)
  33. exp2 := big.NewInt(0).Mod(p.D, q1)
  34. coeff := big.NewInt(0).ModInverse(p.Primes[1], p.Primes[0])
  35. exponent1 := toBase64(exp1.Bytes())
  36. exponent2 := toBase64(exp2.Bytes())
  37. coefficient := toBase64(coeff.Bytes())
  38. return format +
  39. "Algorithm: " + algorithm + "\n" +
  40. "Modulus: " + modulus + "\n" +
  41. "PublicExponent: " + publicExponent + "\n" +
  42. "PrivateExponent: " + privateExponent + "\n" +
  43. "Prime1: " + prime1 + "\n" +
  44. "Prime2: " + prime2 + "\n" +
  45. "Exponent1: " + exponent1 + "\n" +
  46. "Exponent2: " + exponent2 + "\n" +
  47. "Coefficient: " + coefficient + "\n"
  48. case *ecdsa.PrivateKey:
  49. var intlen int
  50. switch r.Algorithm {
  51. case ECDSAP256SHA256:
  52. intlen = 32
  53. case ECDSAP384SHA384:
  54. intlen = 48
  55. }
  56. private := toBase64(intToBytes(p.D, intlen))
  57. return format +
  58. "Algorithm: " + algorithm + "\n" +
  59. "PrivateKey: " + private + "\n"
  60. case *dsa.PrivateKey:
  61. T := divRoundUp(divRoundUp(p.PublicKey.Parameters.G.BitLen(), 8)-64, 8)
  62. prime := toBase64(intToBytes(p.PublicKey.Parameters.P, 64+T*8))
  63. subprime := toBase64(intToBytes(p.PublicKey.Parameters.Q, 20))
  64. base := toBase64(intToBytes(p.PublicKey.Parameters.G, 64+T*8))
  65. priv := toBase64(intToBytes(p.X, 20))
  66. pub := toBase64(intToBytes(p.PublicKey.Y, 64+T*8))
  67. return format +
  68. "Algorithm: " + algorithm + "\n" +
  69. "Prime(p): " + prime + "\n" +
  70. "Subprime(q): " + subprime + "\n" +
  71. "Base(g): " + base + "\n" +
  72. "Private_value(x): " + priv + "\n" +
  73. "Public_value(y): " + pub + "\n"
  74. case ed25519.PrivateKey:
  75. private := toBase64(p[:32])
  76. return format +
  77. "Algorithm: " + algorithm + "\n" +
  78. "PrivateKey: " + private + "\n"
  79. default:
  80. return ""
  81. }
  82. }