123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393 |
- // Copyright 2012-present Oliver Eilhard. All rights reserved.
- // Use of this source code is governed by a MIT-license.
- // See http://olivere.mit-license.org/license.txt for details.
- package elastic
- // MovAvgAggregation operates on a series of data. It will slide a window
- // across the data and emit the average value of that window.
- //
- // For more details, see
- // https://www.elastic.co/guide/en/elasticsearch/reference/5.2/search-aggregations-pipeline-movavg-aggregation.html
- type MovAvgAggregation struct {
- format string
- gapPolicy string
- model MovAvgModel
- window *int
- predict *int
- minimize *bool
- subAggregations map[string]Aggregation
- meta map[string]interface{}
- bucketsPaths []string
- }
- // NewMovAvgAggregation creates and initializes a new MovAvgAggregation.
- func NewMovAvgAggregation() *MovAvgAggregation {
- return &MovAvgAggregation{
- subAggregations: make(map[string]Aggregation),
- bucketsPaths: make([]string, 0),
- }
- }
- func (a *MovAvgAggregation) Format(format string) *MovAvgAggregation {
- a.format = format
- return a
- }
- // GapPolicy defines what should be done when a gap in the series is discovered.
- // Valid values include "insert_zeros" or "skip". Default is "insert_zeros".
- func (a *MovAvgAggregation) GapPolicy(gapPolicy string) *MovAvgAggregation {
- a.gapPolicy = gapPolicy
- return a
- }
- // GapInsertZeros inserts zeros for gaps in the series.
- func (a *MovAvgAggregation) GapInsertZeros() *MovAvgAggregation {
- a.gapPolicy = "insert_zeros"
- return a
- }
- // GapSkip skips gaps in the series.
- func (a *MovAvgAggregation) GapSkip() *MovAvgAggregation {
- a.gapPolicy = "skip"
- return a
- }
- // Model is used to define what type of moving average you want to use
- // in the series.
- func (a *MovAvgAggregation) Model(model MovAvgModel) *MovAvgAggregation {
- a.model = model
- return a
- }
- // Window sets the window size for the moving average. This window will
- // "slide" across the series, and the values inside that window will
- // be used to calculate the moving avg value.
- func (a *MovAvgAggregation) Window(window int) *MovAvgAggregation {
- a.window = &window
- return a
- }
- // Predict sets the number of predictions that should be returned.
- // Each prediction will be spaced at the intervals in the histogram.
- // E.g. a predict of 2 will return two new buckets at the end of the
- // histogram with the predicted values.
- func (a *MovAvgAggregation) Predict(numPredictions int) *MovAvgAggregation {
- a.predict = &numPredictions
- return a
- }
- // Minimize determines if the model should be fit to the data using a
- // cost minimizing algorithm.
- func (a *MovAvgAggregation) Minimize(minimize bool) *MovAvgAggregation {
- a.minimize = &minimize
- return a
- }
- // SubAggregation adds a sub-aggregation to this aggregation.
- func (a *MovAvgAggregation) SubAggregation(name string, subAggregation Aggregation) *MovAvgAggregation {
- a.subAggregations[name] = subAggregation
- return a
- }
- // Meta sets the meta data to be included in the aggregation response.
- func (a *MovAvgAggregation) Meta(metaData map[string]interface{}) *MovAvgAggregation {
- a.meta = metaData
- return a
- }
- // BucketsPath sets the paths to the buckets to use for this pipeline aggregator.
- func (a *MovAvgAggregation) BucketsPath(bucketsPaths ...string) *MovAvgAggregation {
- a.bucketsPaths = append(a.bucketsPaths, bucketsPaths...)
- return a
- }
- func (a *MovAvgAggregation) Source() (interface{}, error) {
- source := make(map[string]interface{})
- params := make(map[string]interface{})
- source["moving_avg"] = params
- if a.format != "" {
- params["format"] = a.format
- }
- if a.gapPolicy != "" {
- params["gap_policy"] = a.gapPolicy
- }
- if a.model != nil {
- params["model"] = a.model.Name()
- settings := a.model.Settings()
- if len(settings) > 0 {
- params["settings"] = settings
- }
- }
- if a.window != nil {
- params["window"] = *a.window
- }
- if a.predict != nil {
- params["predict"] = *a.predict
- }
- if a.minimize != nil {
- params["minimize"] = *a.minimize
- }
- // Add buckets paths
- switch len(a.bucketsPaths) {
- case 0:
- case 1:
- params["buckets_path"] = a.bucketsPaths[0]
- default:
- params["buckets_path"] = a.bucketsPaths
- }
- // AggregationBuilder (SubAggregations)
- if len(a.subAggregations) > 0 {
- aggsMap := make(map[string]interface{})
- source["aggregations"] = aggsMap
- for name, aggregate := range a.subAggregations {
- src, err := aggregate.Source()
- if err != nil {
- return nil, err
- }
- aggsMap[name] = src
- }
- }
- // Add Meta data if available
- if len(a.meta) > 0 {
- source["meta"] = a.meta
- }
- return source, nil
- }
- // -- Models for moving averages --
- // See https://www.elastic.co/guide/en/elasticsearch/reference/5.2/search-aggregations-pipeline-movavg-aggregation.html#_models
- // MovAvgModel specifies the model to use with the MovAvgAggregation.
- type MovAvgModel interface {
- Name() string
- Settings() map[string]interface{}
- }
- // -- EWMA --
- // EWMAMovAvgModel calculates an exponentially weighted moving average.
- //
- // For more details, see
- // https://www.elastic.co/guide/en/elasticsearch/reference/5.2/search-aggregations-pipeline-movavg-aggregation.html#_ewma_exponentially_weighted
- type EWMAMovAvgModel struct {
- alpha *float64
- }
- // NewEWMAMovAvgModel creates and initializes a new EWMAMovAvgModel.
- func NewEWMAMovAvgModel() *EWMAMovAvgModel {
- return &EWMAMovAvgModel{}
- }
- // Alpha controls the smoothing of the data. Alpha = 1 retains no memory
- // of past values (e.g. a random walk), while alpha = 0 retains infinite
- // memory of past values (e.g. the series mean). Useful values are somewhere
- // in between. Defaults to 0.5.
- func (m *EWMAMovAvgModel) Alpha(alpha float64) *EWMAMovAvgModel {
- m.alpha = &alpha
- return m
- }
- // Name of the model.
- func (m *EWMAMovAvgModel) Name() string {
- return "ewma"
- }
- // Settings of the model.
- func (m *EWMAMovAvgModel) Settings() map[string]interface{} {
- settings := make(map[string]interface{})
- if m.alpha != nil {
- settings["alpha"] = *m.alpha
- }
- return settings
- }
- // -- Holt linear --
- // HoltLinearMovAvgModel calculates a doubly exponential weighted moving average.
- //
- // For more details, see
- // https://www.elastic.co/guide/en/elasticsearch/reference/5.2/search-aggregations-pipeline-movavg-aggregation.html#_holt_linear
- type HoltLinearMovAvgModel struct {
- alpha *float64
- beta *float64
- }
- // NewHoltLinearMovAvgModel creates and initializes a new HoltLinearMovAvgModel.
- func NewHoltLinearMovAvgModel() *HoltLinearMovAvgModel {
- return &HoltLinearMovAvgModel{}
- }
- // Alpha controls the smoothing of the data. Alpha = 1 retains no memory
- // of past values (e.g. a random walk), while alpha = 0 retains infinite
- // memory of past values (e.g. the series mean). Useful values are somewhere
- // in between. Defaults to 0.5.
- func (m *HoltLinearMovAvgModel) Alpha(alpha float64) *HoltLinearMovAvgModel {
- m.alpha = &alpha
- return m
- }
- // Beta is equivalent to Alpha but controls the smoothing of the trend
- // instead of the data.
- func (m *HoltLinearMovAvgModel) Beta(beta float64) *HoltLinearMovAvgModel {
- m.beta = &beta
- return m
- }
- // Name of the model.
- func (m *HoltLinearMovAvgModel) Name() string {
- return "holt"
- }
- // Settings of the model.
- func (m *HoltLinearMovAvgModel) Settings() map[string]interface{} {
- settings := make(map[string]interface{})
- if m.alpha != nil {
- settings["alpha"] = *m.alpha
- }
- if m.beta != nil {
- settings["beta"] = *m.beta
- }
- return settings
- }
- // -- Holt Winters --
- // HoltWintersMovAvgModel calculates a triple exponential weighted moving average.
- //
- // For more details, see
- // https://www.elastic.co/guide/en/elasticsearch/reference/5.2/search-aggregations-pipeline-movavg-aggregation.html#_holt_winters
- type HoltWintersMovAvgModel struct {
- alpha *float64
- beta *float64
- gamma *float64
- period *int
- seasonalityType string
- pad *bool
- }
- // NewHoltWintersMovAvgModel creates and initializes a new HoltWintersMovAvgModel.
- func NewHoltWintersMovAvgModel() *HoltWintersMovAvgModel {
- return &HoltWintersMovAvgModel{}
- }
- // Alpha controls the smoothing of the data. Alpha = 1 retains no memory
- // of past values (e.g. a random walk), while alpha = 0 retains infinite
- // memory of past values (e.g. the series mean). Useful values are somewhere
- // in between. Defaults to 0.5.
- func (m *HoltWintersMovAvgModel) Alpha(alpha float64) *HoltWintersMovAvgModel {
- m.alpha = &alpha
- return m
- }
- // Beta is equivalent to Alpha but controls the smoothing of the trend
- // instead of the data.
- func (m *HoltWintersMovAvgModel) Beta(beta float64) *HoltWintersMovAvgModel {
- m.beta = &beta
- return m
- }
- func (m *HoltWintersMovAvgModel) Gamma(gamma float64) *HoltWintersMovAvgModel {
- m.gamma = &gamma
- return m
- }
- func (m *HoltWintersMovAvgModel) Period(period int) *HoltWintersMovAvgModel {
- m.period = &period
- return m
- }
- func (m *HoltWintersMovAvgModel) SeasonalityType(typ string) *HoltWintersMovAvgModel {
- m.seasonalityType = typ
- return m
- }
- func (m *HoltWintersMovAvgModel) Pad(pad bool) *HoltWintersMovAvgModel {
- m.pad = &pad
- return m
- }
- // Name of the model.
- func (m *HoltWintersMovAvgModel) Name() string {
- return "holt_winters"
- }
- // Settings of the model.
- func (m *HoltWintersMovAvgModel) Settings() map[string]interface{} {
- settings := make(map[string]interface{})
- if m.alpha != nil {
- settings["alpha"] = *m.alpha
- }
- if m.beta != nil {
- settings["beta"] = *m.beta
- }
- if m.gamma != nil {
- settings["gamma"] = *m.gamma
- }
- if m.period != nil {
- settings["period"] = *m.period
- }
- if m.pad != nil {
- settings["pad"] = *m.pad
- }
- if m.seasonalityType != "" {
- settings["type"] = m.seasonalityType
- }
- return settings
- }
- // -- Linear --
- // LinearMovAvgModel calculates a linearly weighted moving average, such
- // that older values are linearly less important. "Time" is determined
- // by position in collection.
- //
- // For more details, see
- // https://www.elastic.co/guide/en/elasticsearch/reference/5.2/search-aggregations-pipeline-movavg-aggregation.html#_linear
- type LinearMovAvgModel struct {
- }
- // NewLinearMovAvgModel creates and initializes a new LinearMovAvgModel.
- func NewLinearMovAvgModel() *LinearMovAvgModel {
- return &LinearMovAvgModel{}
- }
- // Name of the model.
- func (m *LinearMovAvgModel) Name() string {
- return "linear"
- }
- // Settings of the model.
- func (m *LinearMovAvgModel) Settings() map[string]interface{} {
- return nil
- }
- // -- Simple --
- // SimpleMovAvgModel calculates a simple unweighted (arithmetic) moving average.
- //
- // For more details, see
- // https://www.elastic.co/guide/en/elasticsearch/reference/5.2/search-aggregations-pipeline-movavg-aggregation.html#_simple
- type SimpleMovAvgModel struct {
- }
- // NewSimpleMovAvgModel creates and initializes a new SimpleMovAvgModel.
- func NewSimpleMovAvgModel() *SimpleMovAvgModel {
- return &SimpleMovAvgModel{}
- }
- // Name of the model.
- func (m *SimpleMovAvgModel) Name() string {
- return "simple"
- }
- // Settings of the model.
- func (m *SimpleMovAvgModel) Settings() map[string]interface{} {
- return nil
- }
|