12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793 |
- // Copyright 2016 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package edwards25519
- import "encoding/binary"
- // This code is a port of the public domain, “ref10” implementation of ed25519
- // from SUPERCOP.
- // FieldElement represents an element of the field GF(2^255 - 19). An element
- // t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
- // t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on
- // context.
- type FieldElement [10]int32
- var zero FieldElement
- func FeZero(fe *FieldElement) {
- copy(fe[:], zero[:])
- }
- func FeOne(fe *FieldElement) {
- FeZero(fe)
- fe[0] = 1
- }
- func FeAdd(dst, a, b *FieldElement) {
- dst[0] = a[0] + b[0]
- dst[1] = a[1] + b[1]
- dst[2] = a[2] + b[2]
- dst[3] = a[3] + b[3]
- dst[4] = a[4] + b[4]
- dst[5] = a[5] + b[5]
- dst[6] = a[6] + b[6]
- dst[7] = a[7] + b[7]
- dst[8] = a[8] + b[8]
- dst[9] = a[9] + b[9]
- }
- func FeSub(dst, a, b *FieldElement) {
- dst[0] = a[0] - b[0]
- dst[1] = a[1] - b[1]
- dst[2] = a[2] - b[2]
- dst[3] = a[3] - b[3]
- dst[4] = a[4] - b[4]
- dst[5] = a[5] - b[5]
- dst[6] = a[6] - b[6]
- dst[7] = a[7] - b[7]
- dst[8] = a[8] - b[8]
- dst[9] = a[9] - b[9]
- }
- func FeCopy(dst, src *FieldElement) {
- copy(dst[:], src[:])
- }
- // Replace (f,g) with (g,g) if b == 1;
- // replace (f,g) with (f,g) if b == 0.
- //
- // Preconditions: b in {0,1}.
- func FeCMove(f, g *FieldElement, b int32) {
- b = -b
- f[0] ^= b & (f[0] ^ g[0])
- f[1] ^= b & (f[1] ^ g[1])
- f[2] ^= b & (f[2] ^ g[2])
- f[3] ^= b & (f[3] ^ g[3])
- f[4] ^= b & (f[4] ^ g[4])
- f[5] ^= b & (f[5] ^ g[5])
- f[6] ^= b & (f[6] ^ g[6])
- f[7] ^= b & (f[7] ^ g[7])
- f[8] ^= b & (f[8] ^ g[8])
- f[9] ^= b & (f[9] ^ g[9])
- }
- func load3(in []byte) int64 {
- var r int64
- r = int64(in[0])
- r |= int64(in[1]) << 8
- r |= int64(in[2]) << 16
- return r
- }
- func load4(in []byte) int64 {
- var r int64
- r = int64(in[0])
- r |= int64(in[1]) << 8
- r |= int64(in[2]) << 16
- r |= int64(in[3]) << 24
- return r
- }
- func FeFromBytes(dst *FieldElement, src *[32]byte) {
- h0 := load4(src[:])
- h1 := load3(src[4:]) << 6
- h2 := load3(src[7:]) << 5
- h3 := load3(src[10:]) << 3
- h4 := load3(src[13:]) << 2
- h5 := load4(src[16:])
- h6 := load3(src[20:]) << 7
- h7 := load3(src[23:]) << 5
- h8 := load3(src[26:]) << 4
- h9 := (load3(src[29:]) & 8388607) << 2
- FeCombine(dst, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9)
- }
- // FeToBytes marshals h to s.
- // Preconditions:
- // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
- //
- // Write p=2^255-19; q=floor(h/p).
- // Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).
- //
- // Proof:
- // Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
- // Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4.
- //
- // Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
- // Then 0<y<1.
- //
- // Write r=h-pq.
- // Have 0<=r<=p-1=2^255-20.
- // Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.
- //
- // Write x=r+19(2^-255)r+y.
- // Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
- //
- // Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
- // so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q.
- func FeToBytes(s *[32]byte, h *FieldElement) {
- var carry [10]int32
- q := (19*h[9] + (1 << 24)) >> 25
- q = (h[0] + q) >> 26
- q = (h[1] + q) >> 25
- q = (h[2] + q) >> 26
- q = (h[3] + q) >> 25
- q = (h[4] + q) >> 26
- q = (h[5] + q) >> 25
- q = (h[6] + q) >> 26
- q = (h[7] + q) >> 25
- q = (h[8] + q) >> 26
- q = (h[9] + q) >> 25
- // Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20.
- h[0] += 19 * q
- // Goal: Output h-2^255 q, which is between 0 and 2^255-20.
- carry[0] = h[0] >> 26
- h[1] += carry[0]
- h[0] -= carry[0] << 26
- carry[1] = h[1] >> 25
- h[2] += carry[1]
- h[1] -= carry[1] << 25
- carry[2] = h[2] >> 26
- h[3] += carry[2]
- h[2] -= carry[2] << 26
- carry[3] = h[3] >> 25
- h[4] += carry[3]
- h[3] -= carry[3] << 25
- carry[4] = h[4] >> 26
- h[5] += carry[4]
- h[4] -= carry[4] << 26
- carry[5] = h[5] >> 25
- h[6] += carry[5]
- h[5] -= carry[5] << 25
- carry[6] = h[6] >> 26
- h[7] += carry[6]
- h[6] -= carry[6] << 26
- carry[7] = h[7] >> 25
- h[8] += carry[7]
- h[7] -= carry[7] << 25
- carry[8] = h[8] >> 26
- h[9] += carry[8]
- h[8] -= carry[8] << 26
- carry[9] = h[9] >> 25
- h[9] -= carry[9] << 25
- // h10 = carry9
- // Goal: Output h[0]+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
- // Have h[0]+...+2^230 h[9] between 0 and 2^255-1;
- // evidently 2^255 h10-2^255 q = 0.
- // Goal: Output h[0]+...+2^230 h[9].
- s[0] = byte(h[0] >> 0)
- s[1] = byte(h[0] >> 8)
- s[2] = byte(h[0] >> 16)
- s[3] = byte((h[0] >> 24) | (h[1] << 2))
- s[4] = byte(h[1] >> 6)
- s[5] = byte(h[1] >> 14)
- s[6] = byte((h[1] >> 22) | (h[2] << 3))
- s[7] = byte(h[2] >> 5)
- s[8] = byte(h[2] >> 13)
- s[9] = byte((h[2] >> 21) | (h[3] << 5))
- s[10] = byte(h[3] >> 3)
- s[11] = byte(h[3] >> 11)
- s[12] = byte((h[3] >> 19) | (h[4] << 6))
- s[13] = byte(h[4] >> 2)
- s[14] = byte(h[4] >> 10)
- s[15] = byte(h[4] >> 18)
- s[16] = byte(h[5] >> 0)
- s[17] = byte(h[5] >> 8)
- s[18] = byte(h[5] >> 16)
- s[19] = byte((h[5] >> 24) | (h[6] << 1))
- s[20] = byte(h[6] >> 7)
- s[21] = byte(h[6] >> 15)
- s[22] = byte((h[6] >> 23) | (h[7] << 3))
- s[23] = byte(h[7] >> 5)
- s[24] = byte(h[7] >> 13)
- s[25] = byte((h[7] >> 21) | (h[8] << 4))
- s[26] = byte(h[8] >> 4)
- s[27] = byte(h[8] >> 12)
- s[28] = byte((h[8] >> 20) | (h[9] << 6))
- s[29] = byte(h[9] >> 2)
- s[30] = byte(h[9] >> 10)
- s[31] = byte(h[9] >> 18)
- }
- func FeIsNegative(f *FieldElement) byte {
- var s [32]byte
- FeToBytes(&s, f)
- return s[0] & 1
- }
- func FeIsNonZero(f *FieldElement) int32 {
- var s [32]byte
- FeToBytes(&s, f)
- var x uint8
- for _, b := range s {
- x |= b
- }
- x |= x >> 4
- x |= x >> 2
- x |= x >> 1
- return int32(x & 1)
- }
- // FeNeg sets h = -f
- //
- // Preconditions:
- // |f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
- //
- // Postconditions:
- // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
- func FeNeg(h, f *FieldElement) {
- h[0] = -f[0]
- h[1] = -f[1]
- h[2] = -f[2]
- h[3] = -f[3]
- h[4] = -f[4]
- h[5] = -f[5]
- h[6] = -f[6]
- h[7] = -f[7]
- h[8] = -f[8]
- h[9] = -f[9]
- }
- func FeCombine(h *FieldElement, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9 int64) {
- var c0, c1, c2, c3, c4, c5, c6, c7, c8, c9 int64
- /*
- |h0| <= (1.1*1.1*2^52*(1+19+19+19+19)+1.1*1.1*2^50*(38+38+38+38+38))
- i.e. |h0| <= 1.2*2^59; narrower ranges for h2, h4, h6, h8
- |h1| <= (1.1*1.1*2^51*(1+1+19+19+19+19+19+19+19+19))
- i.e. |h1| <= 1.5*2^58; narrower ranges for h3, h5, h7, h9
- */
- c0 = (h0 + (1 << 25)) >> 26
- h1 += c0
- h0 -= c0 << 26
- c4 = (h4 + (1 << 25)) >> 26
- h5 += c4
- h4 -= c4 << 26
- /* |h0| <= 2^25 */
- /* |h4| <= 2^25 */
- /* |h1| <= 1.51*2^58 */
- /* |h5| <= 1.51*2^58 */
- c1 = (h1 + (1 << 24)) >> 25
- h2 += c1
- h1 -= c1 << 25
- c5 = (h5 + (1 << 24)) >> 25
- h6 += c5
- h5 -= c5 << 25
- /* |h1| <= 2^24; from now on fits into int32 */
- /* |h5| <= 2^24; from now on fits into int32 */
- /* |h2| <= 1.21*2^59 */
- /* |h6| <= 1.21*2^59 */
- c2 = (h2 + (1 << 25)) >> 26
- h3 += c2
- h2 -= c2 << 26
- c6 = (h6 + (1 << 25)) >> 26
- h7 += c6
- h6 -= c6 << 26
- /* |h2| <= 2^25; from now on fits into int32 unchanged */
- /* |h6| <= 2^25; from now on fits into int32 unchanged */
- /* |h3| <= 1.51*2^58 */
- /* |h7| <= 1.51*2^58 */
- c3 = (h3 + (1 << 24)) >> 25
- h4 += c3
- h3 -= c3 << 25
- c7 = (h7 + (1 << 24)) >> 25
- h8 += c7
- h7 -= c7 << 25
- /* |h3| <= 2^24; from now on fits into int32 unchanged */
- /* |h7| <= 2^24; from now on fits into int32 unchanged */
- /* |h4| <= 1.52*2^33 */
- /* |h8| <= 1.52*2^33 */
- c4 = (h4 + (1 << 25)) >> 26
- h5 += c4
- h4 -= c4 << 26
- c8 = (h8 + (1 << 25)) >> 26
- h9 += c8
- h8 -= c8 << 26
- /* |h4| <= 2^25; from now on fits into int32 unchanged */
- /* |h8| <= 2^25; from now on fits into int32 unchanged */
- /* |h5| <= 1.01*2^24 */
- /* |h9| <= 1.51*2^58 */
- c9 = (h9 + (1 << 24)) >> 25
- h0 += c9 * 19
- h9 -= c9 << 25
- /* |h9| <= 2^24; from now on fits into int32 unchanged */
- /* |h0| <= 1.8*2^37 */
- c0 = (h0 + (1 << 25)) >> 26
- h1 += c0
- h0 -= c0 << 26
- /* |h0| <= 2^25; from now on fits into int32 unchanged */
- /* |h1| <= 1.01*2^24 */
- h[0] = int32(h0)
- h[1] = int32(h1)
- h[2] = int32(h2)
- h[3] = int32(h3)
- h[4] = int32(h4)
- h[5] = int32(h5)
- h[6] = int32(h6)
- h[7] = int32(h7)
- h[8] = int32(h8)
- h[9] = int32(h9)
- }
- // FeMul calculates h = f * g
- // Can overlap h with f or g.
- //
- // Preconditions:
- // |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
- // |g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
- //
- // Postconditions:
- // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
- //
- // Notes on implementation strategy:
- //
- // Using schoolbook multiplication.
- // Karatsuba would save a little in some cost models.
- //
- // Most multiplications by 2 and 19 are 32-bit precomputations;
- // cheaper than 64-bit postcomputations.
- //
- // There is one remaining multiplication by 19 in the carry chain;
- // one *19 precomputation can be merged into this,
- // but the resulting data flow is considerably less clean.
- //
- // There are 12 carries below.
- // 10 of them are 2-way parallelizable and vectorizable.
- // Can get away with 11 carries, but then data flow is much deeper.
- //
- // With tighter constraints on inputs, can squeeze carries into int32.
- func FeMul(h, f, g *FieldElement) {
- f0 := int64(f[0])
- f1 := int64(f[1])
- f2 := int64(f[2])
- f3 := int64(f[3])
- f4 := int64(f[4])
- f5 := int64(f[5])
- f6 := int64(f[6])
- f7 := int64(f[7])
- f8 := int64(f[8])
- f9 := int64(f[9])
- f1_2 := int64(2 * f[1])
- f3_2 := int64(2 * f[3])
- f5_2 := int64(2 * f[5])
- f7_2 := int64(2 * f[7])
- f9_2 := int64(2 * f[9])
- g0 := int64(g[0])
- g1 := int64(g[1])
- g2 := int64(g[2])
- g3 := int64(g[3])
- g4 := int64(g[4])
- g5 := int64(g[5])
- g6 := int64(g[6])
- g7 := int64(g[7])
- g8 := int64(g[8])
- g9 := int64(g[9])
- g1_19 := int64(19 * g[1]) /* 1.4*2^29 */
- g2_19 := int64(19 * g[2]) /* 1.4*2^30; still ok */
- g3_19 := int64(19 * g[3])
- g4_19 := int64(19 * g[4])
- g5_19 := int64(19 * g[5])
- g6_19 := int64(19 * g[6])
- g7_19 := int64(19 * g[7])
- g8_19 := int64(19 * g[8])
- g9_19 := int64(19 * g[9])
- h0 := f0*g0 + f1_2*g9_19 + f2*g8_19 + f3_2*g7_19 + f4*g6_19 + f5_2*g5_19 + f6*g4_19 + f7_2*g3_19 + f8*g2_19 + f9_2*g1_19
- h1 := f0*g1 + f1*g0 + f2*g9_19 + f3*g8_19 + f4*g7_19 + f5*g6_19 + f6*g5_19 + f7*g4_19 + f8*g3_19 + f9*g2_19
- h2 := f0*g2 + f1_2*g1 + f2*g0 + f3_2*g9_19 + f4*g8_19 + f5_2*g7_19 + f6*g6_19 + f7_2*g5_19 + f8*g4_19 + f9_2*g3_19
- h3 := f0*g3 + f1*g2 + f2*g1 + f3*g0 + f4*g9_19 + f5*g8_19 + f6*g7_19 + f7*g6_19 + f8*g5_19 + f9*g4_19
- h4 := f0*g4 + f1_2*g3 + f2*g2 + f3_2*g1 + f4*g0 + f5_2*g9_19 + f6*g8_19 + f7_2*g7_19 + f8*g6_19 + f9_2*g5_19
- h5 := f0*g5 + f1*g4 + f2*g3 + f3*g2 + f4*g1 + f5*g0 + f6*g9_19 + f7*g8_19 + f8*g7_19 + f9*g6_19
- h6 := f0*g6 + f1_2*g5 + f2*g4 + f3_2*g3 + f4*g2 + f5_2*g1 + f6*g0 + f7_2*g9_19 + f8*g8_19 + f9_2*g7_19
- h7 := f0*g7 + f1*g6 + f2*g5 + f3*g4 + f4*g3 + f5*g2 + f6*g1 + f7*g0 + f8*g9_19 + f9*g8_19
- h8 := f0*g8 + f1_2*g7 + f2*g6 + f3_2*g5 + f4*g4 + f5_2*g3 + f6*g2 + f7_2*g1 + f8*g0 + f9_2*g9_19
- h9 := f0*g9 + f1*g8 + f2*g7 + f3*g6 + f4*g5 + f5*g4 + f6*g3 + f7*g2 + f8*g1 + f9*g0
- FeCombine(h, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9)
- }
- func feSquare(f *FieldElement) (h0, h1, h2, h3, h4, h5, h6, h7, h8, h9 int64) {
- f0 := int64(f[0])
- f1 := int64(f[1])
- f2 := int64(f[2])
- f3 := int64(f[3])
- f4 := int64(f[4])
- f5 := int64(f[5])
- f6 := int64(f[6])
- f7 := int64(f[7])
- f8 := int64(f[8])
- f9 := int64(f[9])
- f0_2 := int64(2 * f[0])
- f1_2 := int64(2 * f[1])
- f2_2 := int64(2 * f[2])
- f3_2 := int64(2 * f[3])
- f4_2 := int64(2 * f[4])
- f5_2 := int64(2 * f[5])
- f6_2 := int64(2 * f[6])
- f7_2 := int64(2 * f[7])
- f5_38 := 38 * f5 // 1.31*2^30
- f6_19 := 19 * f6 // 1.31*2^30
- f7_38 := 38 * f7 // 1.31*2^30
- f8_19 := 19 * f8 // 1.31*2^30
- f9_38 := 38 * f9 // 1.31*2^30
- h0 = f0*f0 + f1_2*f9_38 + f2_2*f8_19 + f3_2*f7_38 + f4_2*f6_19 + f5*f5_38
- h1 = f0_2*f1 + f2*f9_38 + f3_2*f8_19 + f4*f7_38 + f5_2*f6_19
- h2 = f0_2*f2 + f1_2*f1 + f3_2*f9_38 + f4_2*f8_19 + f5_2*f7_38 + f6*f6_19
- h3 = f0_2*f3 + f1_2*f2 + f4*f9_38 + f5_2*f8_19 + f6*f7_38
- h4 = f0_2*f4 + f1_2*f3_2 + f2*f2 + f5_2*f9_38 + f6_2*f8_19 + f7*f7_38
- h5 = f0_2*f5 + f1_2*f4 + f2_2*f3 + f6*f9_38 + f7_2*f8_19
- h6 = f0_2*f6 + f1_2*f5_2 + f2_2*f4 + f3_2*f3 + f7_2*f9_38 + f8*f8_19
- h7 = f0_2*f7 + f1_2*f6 + f2_2*f5 + f3_2*f4 + f8*f9_38
- h8 = f0_2*f8 + f1_2*f7_2 + f2_2*f6 + f3_2*f5_2 + f4*f4 + f9*f9_38
- h9 = f0_2*f9 + f1_2*f8 + f2_2*f7 + f3_2*f6 + f4_2*f5
- return
- }
- // FeSquare calculates h = f*f. Can overlap h with f.
- //
- // Preconditions:
- // |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
- //
- // Postconditions:
- // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
- func FeSquare(h, f *FieldElement) {
- h0, h1, h2, h3, h4, h5, h6, h7, h8, h9 := feSquare(f)
- FeCombine(h, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9)
- }
- // FeSquare2 sets h = 2 * f * f
- //
- // Can overlap h with f.
- //
- // Preconditions:
- // |f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
- //
- // Postconditions:
- // |h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.
- // See fe_mul.c for discussion of implementation strategy.
- func FeSquare2(h, f *FieldElement) {
- h0, h1, h2, h3, h4, h5, h6, h7, h8, h9 := feSquare(f)
- h0 += h0
- h1 += h1
- h2 += h2
- h3 += h3
- h4 += h4
- h5 += h5
- h6 += h6
- h7 += h7
- h8 += h8
- h9 += h9
- FeCombine(h, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9)
- }
- func FeInvert(out, z *FieldElement) {
- var t0, t1, t2, t3 FieldElement
- var i int
- FeSquare(&t0, z) // 2^1
- FeSquare(&t1, &t0) // 2^2
- for i = 1; i < 2; i++ { // 2^3
- FeSquare(&t1, &t1)
- }
- FeMul(&t1, z, &t1) // 2^3 + 2^0
- FeMul(&t0, &t0, &t1) // 2^3 + 2^1 + 2^0
- FeSquare(&t2, &t0) // 2^4 + 2^2 + 2^1
- FeMul(&t1, &t1, &t2) // 2^4 + 2^3 + 2^2 + 2^1 + 2^0
- FeSquare(&t2, &t1) // 5,4,3,2,1
- for i = 1; i < 5; i++ { // 9,8,7,6,5
- FeSquare(&t2, &t2)
- }
- FeMul(&t1, &t2, &t1) // 9,8,7,6,5,4,3,2,1,0
- FeSquare(&t2, &t1) // 10..1
- for i = 1; i < 10; i++ { // 19..10
- FeSquare(&t2, &t2)
- }
- FeMul(&t2, &t2, &t1) // 19..0
- FeSquare(&t3, &t2) // 20..1
- for i = 1; i < 20; i++ { // 39..20
- FeSquare(&t3, &t3)
- }
- FeMul(&t2, &t3, &t2) // 39..0
- FeSquare(&t2, &t2) // 40..1
- for i = 1; i < 10; i++ { // 49..10
- FeSquare(&t2, &t2)
- }
- FeMul(&t1, &t2, &t1) // 49..0
- FeSquare(&t2, &t1) // 50..1
- for i = 1; i < 50; i++ { // 99..50
- FeSquare(&t2, &t2)
- }
- FeMul(&t2, &t2, &t1) // 99..0
- FeSquare(&t3, &t2) // 100..1
- for i = 1; i < 100; i++ { // 199..100
- FeSquare(&t3, &t3)
- }
- FeMul(&t2, &t3, &t2) // 199..0
- FeSquare(&t2, &t2) // 200..1
- for i = 1; i < 50; i++ { // 249..50
- FeSquare(&t2, &t2)
- }
- FeMul(&t1, &t2, &t1) // 249..0
- FeSquare(&t1, &t1) // 250..1
- for i = 1; i < 5; i++ { // 254..5
- FeSquare(&t1, &t1)
- }
- FeMul(out, &t1, &t0) // 254..5,3,1,0
- }
- func fePow22523(out, z *FieldElement) {
- var t0, t1, t2 FieldElement
- var i int
- FeSquare(&t0, z)
- for i = 1; i < 1; i++ {
- FeSquare(&t0, &t0)
- }
- FeSquare(&t1, &t0)
- for i = 1; i < 2; i++ {
- FeSquare(&t1, &t1)
- }
- FeMul(&t1, z, &t1)
- FeMul(&t0, &t0, &t1)
- FeSquare(&t0, &t0)
- for i = 1; i < 1; i++ {
- FeSquare(&t0, &t0)
- }
- FeMul(&t0, &t1, &t0)
- FeSquare(&t1, &t0)
- for i = 1; i < 5; i++ {
- FeSquare(&t1, &t1)
- }
- FeMul(&t0, &t1, &t0)
- FeSquare(&t1, &t0)
- for i = 1; i < 10; i++ {
- FeSquare(&t1, &t1)
- }
- FeMul(&t1, &t1, &t0)
- FeSquare(&t2, &t1)
- for i = 1; i < 20; i++ {
- FeSquare(&t2, &t2)
- }
- FeMul(&t1, &t2, &t1)
- FeSquare(&t1, &t1)
- for i = 1; i < 10; i++ {
- FeSquare(&t1, &t1)
- }
- FeMul(&t0, &t1, &t0)
- FeSquare(&t1, &t0)
- for i = 1; i < 50; i++ {
- FeSquare(&t1, &t1)
- }
- FeMul(&t1, &t1, &t0)
- FeSquare(&t2, &t1)
- for i = 1; i < 100; i++ {
- FeSquare(&t2, &t2)
- }
- FeMul(&t1, &t2, &t1)
- FeSquare(&t1, &t1)
- for i = 1; i < 50; i++ {
- FeSquare(&t1, &t1)
- }
- FeMul(&t0, &t1, &t0)
- FeSquare(&t0, &t0)
- for i = 1; i < 2; i++ {
- FeSquare(&t0, &t0)
- }
- FeMul(out, &t0, z)
- }
- // Group elements are members of the elliptic curve -x^2 + y^2 = 1 + d * x^2 *
- // y^2 where d = -121665/121666.
- //
- // Several representations are used:
- // ProjectiveGroupElement: (X:Y:Z) satisfying x=X/Z, y=Y/Z
- // ExtendedGroupElement: (X:Y:Z:T) satisfying x=X/Z, y=Y/Z, XY=ZT
- // CompletedGroupElement: ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T
- // PreComputedGroupElement: (y+x,y-x,2dxy)
- type ProjectiveGroupElement struct {
- X, Y, Z FieldElement
- }
- type ExtendedGroupElement struct {
- X, Y, Z, T FieldElement
- }
- type CompletedGroupElement struct {
- X, Y, Z, T FieldElement
- }
- type PreComputedGroupElement struct {
- yPlusX, yMinusX, xy2d FieldElement
- }
- type CachedGroupElement struct {
- yPlusX, yMinusX, Z, T2d FieldElement
- }
- func (p *ProjectiveGroupElement) Zero() {
- FeZero(&p.X)
- FeOne(&p.Y)
- FeOne(&p.Z)
- }
- func (p *ProjectiveGroupElement) Double(r *CompletedGroupElement) {
- var t0 FieldElement
- FeSquare(&r.X, &p.X)
- FeSquare(&r.Z, &p.Y)
- FeSquare2(&r.T, &p.Z)
- FeAdd(&r.Y, &p.X, &p.Y)
- FeSquare(&t0, &r.Y)
- FeAdd(&r.Y, &r.Z, &r.X)
- FeSub(&r.Z, &r.Z, &r.X)
- FeSub(&r.X, &t0, &r.Y)
- FeSub(&r.T, &r.T, &r.Z)
- }
- func (p *ProjectiveGroupElement) ToBytes(s *[32]byte) {
- var recip, x, y FieldElement
- FeInvert(&recip, &p.Z)
- FeMul(&x, &p.X, &recip)
- FeMul(&y, &p.Y, &recip)
- FeToBytes(s, &y)
- s[31] ^= FeIsNegative(&x) << 7
- }
- func (p *ExtendedGroupElement) Zero() {
- FeZero(&p.X)
- FeOne(&p.Y)
- FeOne(&p.Z)
- FeZero(&p.T)
- }
- func (p *ExtendedGroupElement) Double(r *CompletedGroupElement) {
- var q ProjectiveGroupElement
- p.ToProjective(&q)
- q.Double(r)
- }
- func (p *ExtendedGroupElement) ToCached(r *CachedGroupElement) {
- FeAdd(&r.yPlusX, &p.Y, &p.X)
- FeSub(&r.yMinusX, &p.Y, &p.X)
- FeCopy(&r.Z, &p.Z)
- FeMul(&r.T2d, &p.T, &d2)
- }
- func (p *ExtendedGroupElement) ToProjective(r *ProjectiveGroupElement) {
- FeCopy(&r.X, &p.X)
- FeCopy(&r.Y, &p.Y)
- FeCopy(&r.Z, &p.Z)
- }
- func (p *ExtendedGroupElement) ToBytes(s *[32]byte) {
- var recip, x, y FieldElement
- FeInvert(&recip, &p.Z)
- FeMul(&x, &p.X, &recip)
- FeMul(&y, &p.Y, &recip)
- FeToBytes(s, &y)
- s[31] ^= FeIsNegative(&x) << 7
- }
- func (p *ExtendedGroupElement) FromBytes(s *[32]byte) bool {
- var u, v, v3, vxx, check FieldElement
- FeFromBytes(&p.Y, s)
- FeOne(&p.Z)
- FeSquare(&u, &p.Y)
- FeMul(&v, &u, &d)
- FeSub(&u, &u, &p.Z) // y = y^2-1
- FeAdd(&v, &v, &p.Z) // v = dy^2+1
- FeSquare(&v3, &v)
- FeMul(&v3, &v3, &v) // v3 = v^3
- FeSquare(&p.X, &v3)
- FeMul(&p.X, &p.X, &v)
- FeMul(&p.X, &p.X, &u) // x = uv^7
- fePow22523(&p.X, &p.X) // x = (uv^7)^((q-5)/8)
- FeMul(&p.X, &p.X, &v3)
- FeMul(&p.X, &p.X, &u) // x = uv^3(uv^7)^((q-5)/8)
- var tmpX, tmp2 [32]byte
- FeSquare(&vxx, &p.X)
- FeMul(&vxx, &vxx, &v)
- FeSub(&check, &vxx, &u) // vx^2-u
- if FeIsNonZero(&check) == 1 {
- FeAdd(&check, &vxx, &u) // vx^2+u
- if FeIsNonZero(&check) == 1 {
- return false
- }
- FeMul(&p.X, &p.X, &SqrtM1)
- FeToBytes(&tmpX, &p.X)
- for i, v := range tmpX {
- tmp2[31-i] = v
- }
- }
- if FeIsNegative(&p.X) != (s[31] >> 7) {
- FeNeg(&p.X, &p.X)
- }
- FeMul(&p.T, &p.X, &p.Y)
- return true
- }
- func (p *CompletedGroupElement) ToProjective(r *ProjectiveGroupElement) {
- FeMul(&r.X, &p.X, &p.T)
- FeMul(&r.Y, &p.Y, &p.Z)
- FeMul(&r.Z, &p.Z, &p.T)
- }
- func (p *CompletedGroupElement) ToExtended(r *ExtendedGroupElement) {
- FeMul(&r.X, &p.X, &p.T)
- FeMul(&r.Y, &p.Y, &p.Z)
- FeMul(&r.Z, &p.Z, &p.T)
- FeMul(&r.T, &p.X, &p.Y)
- }
- func (p *PreComputedGroupElement) Zero() {
- FeOne(&p.yPlusX)
- FeOne(&p.yMinusX)
- FeZero(&p.xy2d)
- }
- func geAdd(r *CompletedGroupElement, p *ExtendedGroupElement, q *CachedGroupElement) {
- var t0 FieldElement
- FeAdd(&r.X, &p.Y, &p.X)
- FeSub(&r.Y, &p.Y, &p.X)
- FeMul(&r.Z, &r.X, &q.yPlusX)
- FeMul(&r.Y, &r.Y, &q.yMinusX)
- FeMul(&r.T, &q.T2d, &p.T)
- FeMul(&r.X, &p.Z, &q.Z)
- FeAdd(&t0, &r.X, &r.X)
- FeSub(&r.X, &r.Z, &r.Y)
- FeAdd(&r.Y, &r.Z, &r.Y)
- FeAdd(&r.Z, &t0, &r.T)
- FeSub(&r.T, &t0, &r.T)
- }
- func geSub(r *CompletedGroupElement, p *ExtendedGroupElement, q *CachedGroupElement) {
- var t0 FieldElement
- FeAdd(&r.X, &p.Y, &p.X)
- FeSub(&r.Y, &p.Y, &p.X)
- FeMul(&r.Z, &r.X, &q.yMinusX)
- FeMul(&r.Y, &r.Y, &q.yPlusX)
- FeMul(&r.T, &q.T2d, &p.T)
- FeMul(&r.X, &p.Z, &q.Z)
- FeAdd(&t0, &r.X, &r.X)
- FeSub(&r.X, &r.Z, &r.Y)
- FeAdd(&r.Y, &r.Z, &r.Y)
- FeSub(&r.Z, &t0, &r.T)
- FeAdd(&r.T, &t0, &r.T)
- }
- func geMixedAdd(r *CompletedGroupElement, p *ExtendedGroupElement, q *PreComputedGroupElement) {
- var t0 FieldElement
- FeAdd(&r.X, &p.Y, &p.X)
- FeSub(&r.Y, &p.Y, &p.X)
- FeMul(&r.Z, &r.X, &q.yPlusX)
- FeMul(&r.Y, &r.Y, &q.yMinusX)
- FeMul(&r.T, &q.xy2d, &p.T)
- FeAdd(&t0, &p.Z, &p.Z)
- FeSub(&r.X, &r.Z, &r.Y)
- FeAdd(&r.Y, &r.Z, &r.Y)
- FeAdd(&r.Z, &t0, &r.T)
- FeSub(&r.T, &t0, &r.T)
- }
- func geMixedSub(r *CompletedGroupElement, p *ExtendedGroupElement, q *PreComputedGroupElement) {
- var t0 FieldElement
- FeAdd(&r.X, &p.Y, &p.X)
- FeSub(&r.Y, &p.Y, &p.X)
- FeMul(&r.Z, &r.X, &q.yMinusX)
- FeMul(&r.Y, &r.Y, &q.yPlusX)
- FeMul(&r.T, &q.xy2d, &p.T)
- FeAdd(&t0, &p.Z, &p.Z)
- FeSub(&r.X, &r.Z, &r.Y)
- FeAdd(&r.Y, &r.Z, &r.Y)
- FeSub(&r.Z, &t0, &r.T)
- FeAdd(&r.T, &t0, &r.T)
- }
- func slide(r *[256]int8, a *[32]byte) {
- for i := range r {
- r[i] = int8(1 & (a[i>>3] >> uint(i&7)))
- }
- for i := range r {
- if r[i] != 0 {
- for b := 1; b <= 6 && i+b < 256; b++ {
- if r[i+b] != 0 {
- if r[i]+(r[i+b]<<uint(b)) <= 15 {
- r[i] += r[i+b] << uint(b)
- r[i+b] = 0
- } else if r[i]-(r[i+b]<<uint(b)) >= -15 {
- r[i] -= r[i+b] << uint(b)
- for k := i + b; k < 256; k++ {
- if r[k] == 0 {
- r[k] = 1
- break
- }
- r[k] = 0
- }
- } else {
- break
- }
- }
- }
- }
- }
- }
- // GeDoubleScalarMultVartime sets r = a*A + b*B
- // where a = a[0]+256*a[1]+...+256^31 a[31].
- // and b = b[0]+256*b[1]+...+256^31 b[31].
- // B is the Ed25519 base point (x,4/5) with x positive.
- func GeDoubleScalarMultVartime(r *ProjectiveGroupElement, a *[32]byte, A *ExtendedGroupElement, b *[32]byte) {
- var aSlide, bSlide [256]int8
- var Ai [8]CachedGroupElement // A,3A,5A,7A,9A,11A,13A,15A
- var t CompletedGroupElement
- var u, A2 ExtendedGroupElement
- var i int
- slide(&aSlide, a)
- slide(&bSlide, b)
- A.ToCached(&Ai[0])
- A.Double(&t)
- t.ToExtended(&A2)
- for i := 0; i < 7; i++ {
- geAdd(&t, &A2, &Ai[i])
- t.ToExtended(&u)
- u.ToCached(&Ai[i+1])
- }
- r.Zero()
- for i = 255; i >= 0; i-- {
- if aSlide[i] != 0 || bSlide[i] != 0 {
- break
- }
- }
- for ; i >= 0; i-- {
- r.Double(&t)
- if aSlide[i] > 0 {
- t.ToExtended(&u)
- geAdd(&t, &u, &Ai[aSlide[i]/2])
- } else if aSlide[i] < 0 {
- t.ToExtended(&u)
- geSub(&t, &u, &Ai[(-aSlide[i])/2])
- }
- if bSlide[i] > 0 {
- t.ToExtended(&u)
- geMixedAdd(&t, &u, &bi[bSlide[i]/2])
- } else if bSlide[i] < 0 {
- t.ToExtended(&u)
- geMixedSub(&t, &u, &bi[(-bSlide[i])/2])
- }
- t.ToProjective(r)
- }
- }
- // equal returns 1 if b == c and 0 otherwise, assuming that b and c are
- // non-negative.
- func equal(b, c int32) int32 {
- x := uint32(b ^ c)
- x--
- return int32(x >> 31)
- }
- // negative returns 1 if b < 0 and 0 otherwise.
- func negative(b int32) int32 {
- return (b >> 31) & 1
- }
- func PreComputedGroupElementCMove(t, u *PreComputedGroupElement, b int32) {
- FeCMove(&t.yPlusX, &u.yPlusX, b)
- FeCMove(&t.yMinusX, &u.yMinusX, b)
- FeCMove(&t.xy2d, &u.xy2d, b)
- }
- func selectPoint(t *PreComputedGroupElement, pos int32, b int32) {
- var minusT PreComputedGroupElement
- bNegative := negative(b)
- bAbs := b - (((-bNegative) & b) << 1)
- t.Zero()
- for i := int32(0); i < 8; i++ {
- PreComputedGroupElementCMove(t, &base[pos][i], equal(bAbs, i+1))
- }
- FeCopy(&minusT.yPlusX, &t.yMinusX)
- FeCopy(&minusT.yMinusX, &t.yPlusX)
- FeNeg(&minusT.xy2d, &t.xy2d)
- PreComputedGroupElementCMove(t, &minusT, bNegative)
- }
- // GeScalarMultBase computes h = a*B, where
- // a = a[0]+256*a[1]+...+256^31 a[31]
- // B is the Ed25519 base point (x,4/5) with x positive.
- //
- // Preconditions:
- // a[31] <= 127
- func GeScalarMultBase(h *ExtendedGroupElement, a *[32]byte) {
- var e [64]int8
- for i, v := range a {
- e[2*i] = int8(v & 15)
- e[2*i+1] = int8((v >> 4) & 15)
- }
- // each e[i] is between 0 and 15 and e[63] is between 0 and 7.
- carry := int8(0)
- for i := 0; i < 63; i++ {
- e[i] += carry
- carry = (e[i] + 8) >> 4
- e[i] -= carry << 4
- }
- e[63] += carry
- // each e[i] is between -8 and 8.
- h.Zero()
- var t PreComputedGroupElement
- var r CompletedGroupElement
- for i := int32(1); i < 64; i += 2 {
- selectPoint(&t, i/2, int32(e[i]))
- geMixedAdd(&r, h, &t)
- r.ToExtended(h)
- }
- var s ProjectiveGroupElement
- h.Double(&r)
- r.ToProjective(&s)
- s.Double(&r)
- r.ToProjective(&s)
- s.Double(&r)
- r.ToProjective(&s)
- s.Double(&r)
- r.ToExtended(h)
- for i := int32(0); i < 64; i += 2 {
- selectPoint(&t, i/2, int32(e[i]))
- geMixedAdd(&r, h, &t)
- r.ToExtended(h)
- }
- }
- // The scalars are GF(2^252 + 27742317777372353535851937790883648493).
- // Input:
- // a[0]+256*a[1]+...+256^31*a[31] = a
- // b[0]+256*b[1]+...+256^31*b[31] = b
- // c[0]+256*c[1]+...+256^31*c[31] = c
- //
- // Output:
- // s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l
- // where l = 2^252 + 27742317777372353535851937790883648493.
- func ScMulAdd(s, a, b, c *[32]byte) {
- a0 := 2097151 & load3(a[:])
- a1 := 2097151 & (load4(a[2:]) >> 5)
- a2 := 2097151 & (load3(a[5:]) >> 2)
- a3 := 2097151 & (load4(a[7:]) >> 7)
- a4 := 2097151 & (load4(a[10:]) >> 4)
- a5 := 2097151 & (load3(a[13:]) >> 1)
- a6 := 2097151 & (load4(a[15:]) >> 6)
- a7 := 2097151 & (load3(a[18:]) >> 3)
- a8 := 2097151 & load3(a[21:])
- a9 := 2097151 & (load4(a[23:]) >> 5)
- a10 := 2097151 & (load3(a[26:]) >> 2)
- a11 := (load4(a[28:]) >> 7)
- b0 := 2097151 & load3(b[:])
- b1 := 2097151 & (load4(b[2:]) >> 5)
- b2 := 2097151 & (load3(b[5:]) >> 2)
- b3 := 2097151 & (load4(b[7:]) >> 7)
- b4 := 2097151 & (load4(b[10:]) >> 4)
- b5 := 2097151 & (load3(b[13:]) >> 1)
- b6 := 2097151 & (load4(b[15:]) >> 6)
- b7 := 2097151 & (load3(b[18:]) >> 3)
- b8 := 2097151 & load3(b[21:])
- b9 := 2097151 & (load4(b[23:]) >> 5)
- b10 := 2097151 & (load3(b[26:]) >> 2)
- b11 := (load4(b[28:]) >> 7)
- c0 := 2097151 & load3(c[:])
- c1 := 2097151 & (load4(c[2:]) >> 5)
- c2 := 2097151 & (load3(c[5:]) >> 2)
- c3 := 2097151 & (load4(c[7:]) >> 7)
- c4 := 2097151 & (load4(c[10:]) >> 4)
- c5 := 2097151 & (load3(c[13:]) >> 1)
- c6 := 2097151 & (load4(c[15:]) >> 6)
- c7 := 2097151 & (load3(c[18:]) >> 3)
- c8 := 2097151 & load3(c[21:])
- c9 := 2097151 & (load4(c[23:]) >> 5)
- c10 := 2097151 & (load3(c[26:]) >> 2)
- c11 := (load4(c[28:]) >> 7)
- var carry [23]int64
- s0 := c0 + a0*b0
- s1 := c1 + a0*b1 + a1*b0
- s2 := c2 + a0*b2 + a1*b1 + a2*b0
- s3 := c3 + a0*b3 + a1*b2 + a2*b1 + a3*b0
- s4 := c4 + a0*b4 + a1*b3 + a2*b2 + a3*b1 + a4*b0
- s5 := c5 + a0*b5 + a1*b4 + a2*b3 + a3*b2 + a4*b1 + a5*b0
- s6 := c6 + a0*b6 + a1*b5 + a2*b4 + a3*b3 + a4*b2 + a5*b1 + a6*b0
- s7 := c7 + a0*b7 + a1*b6 + a2*b5 + a3*b4 + a4*b3 + a5*b2 + a6*b1 + a7*b0
- s8 := c8 + a0*b8 + a1*b7 + a2*b6 + a3*b5 + a4*b4 + a5*b3 + a6*b2 + a7*b1 + a8*b0
- s9 := c9 + a0*b9 + a1*b8 + a2*b7 + a3*b6 + a4*b5 + a5*b4 + a6*b3 + a7*b2 + a8*b1 + a9*b0
- s10 := c10 + a0*b10 + a1*b9 + a2*b8 + a3*b7 + a4*b6 + a5*b5 + a6*b4 + a7*b3 + a8*b2 + a9*b1 + a10*b0
- s11 := c11 + a0*b11 + a1*b10 + a2*b9 + a3*b8 + a4*b7 + a5*b6 + a6*b5 + a7*b4 + a8*b3 + a9*b2 + a10*b1 + a11*b0
- s12 := a1*b11 + a2*b10 + a3*b9 + a4*b8 + a5*b7 + a6*b6 + a7*b5 + a8*b4 + a9*b3 + a10*b2 + a11*b1
- s13 := a2*b11 + a3*b10 + a4*b9 + a5*b8 + a6*b7 + a7*b6 + a8*b5 + a9*b4 + a10*b3 + a11*b2
- s14 := a3*b11 + a4*b10 + a5*b9 + a6*b8 + a7*b7 + a8*b6 + a9*b5 + a10*b4 + a11*b3
- s15 := a4*b11 + a5*b10 + a6*b9 + a7*b8 + a8*b7 + a9*b6 + a10*b5 + a11*b4
- s16 := a5*b11 + a6*b10 + a7*b9 + a8*b8 + a9*b7 + a10*b6 + a11*b5
- s17 := a6*b11 + a7*b10 + a8*b9 + a9*b8 + a10*b7 + a11*b6
- s18 := a7*b11 + a8*b10 + a9*b9 + a10*b8 + a11*b7
- s19 := a8*b11 + a9*b10 + a10*b9 + a11*b8
- s20 := a9*b11 + a10*b10 + a11*b9
- s21 := a10*b11 + a11*b10
- s22 := a11 * b11
- s23 := int64(0)
- carry[0] = (s0 + (1 << 20)) >> 21
- s1 += carry[0]
- s0 -= carry[0] << 21
- carry[2] = (s2 + (1 << 20)) >> 21
- s3 += carry[2]
- s2 -= carry[2] << 21
- carry[4] = (s4 + (1 << 20)) >> 21
- s5 += carry[4]
- s4 -= carry[4] << 21
- carry[6] = (s6 + (1 << 20)) >> 21
- s7 += carry[6]
- s6 -= carry[6] << 21
- carry[8] = (s8 + (1 << 20)) >> 21
- s9 += carry[8]
- s8 -= carry[8] << 21
- carry[10] = (s10 + (1 << 20)) >> 21
- s11 += carry[10]
- s10 -= carry[10] << 21
- carry[12] = (s12 + (1 << 20)) >> 21
- s13 += carry[12]
- s12 -= carry[12] << 21
- carry[14] = (s14 + (1 << 20)) >> 21
- s15 += carry[14]
- s14 -= carry[14] << 21
- carry[16] = (s16 + (1 << 20)) >> 21
- s17 += carry[16]
- s16 -= carry[16] << 21
- carry[18] = (s18 + (1 << 20)) >> 21
- s19 += carry[18]
- s18 -= carry[18] << 21
- carry[20] = (s20 + (1 << 20)) >> 21
- s21 += carry[20]
- s20 -= carry[20] << 21
- carry[22] = (s22 + (1 << 20)) >> 21
- s23 += carry[22]
- s22 -= carry[22] << 21
- carry[1] = (s1 + (1 << 20)) >> 21
- s2 += carry[1]
- s1 -= carry[1] << 21
- carry[3] = (s3 + (1 << 20)) >> 21
- s4 += carry[3]
- s3 -= carry[3] << 21
- carry[5] = (s5 + (1 << 20)) >> 21
- s6 += carry[5]
- s5 -= carry[5] << 21
- carry[7] = (s7 + (1 << 20)) >> 21
- s8 += carry[7]
- s7 -= carry[7] << 21
- carry[9] = (s9 + (1 << 20)) >> 21
- s10 += carry[9]
- s9 -= carry[9] << 21
- carry[11] = (s11 + (1 << 20)) >> 21
- s12 += carry[11]
- s11 -= carry[11] << 21
- carry[13] = (s13 + (1 << 20)) >> 21
- s14 += carry[13]
- s13 -= carry[13] << 21
- carry[15] = (s15 + (1 << 20)) >> 21
- s16 += carry[15]
- s15 -= carry[15] << 21
- carry[17] = (s17 + (1 << 20)) >> 21
- s18 += carry[17]
- s17 -= carry[17] << 21
- carry[19] = (s19 + (1 << 20)) >> 21
- s20 += carry[19]
- s19 -= carry[19] << 21
- carry[21] = (s21 + (1 << 20)) >> 21
- s22 += carry[21]
- s21 -= carry[21] << 21
- s11 += s23 * 666643
- s12 += s23 * 470296
- s13 += s23 * 654183
- s14 -= s23 * 997805
- s15 += s23 * 136657
- s16 -= s23 * 683901
- s23 = 0
- s10 += s22 * 666643
- s11 += s22 * 470296
- s12 += s22 * 654183
- s13 -= s22 * 997805
- s14 += s22 * 136657
- s15 -= s22 * 683901
- s22 = 0
- s9 += s21 * 666643
- s10 += s21 * 470296
- s11 += s21 * 654183
- s12 -= s21 * 997805
- s13 += s21 * 136657
- s14 -= s21 * 683901
- s21 = 0
- s8 += s20 * 666643
- s9 += s20 * 470296
- s10 += s20 * 654183
- s11 -= s20 * 997805
- s12 += s20 * 136657
- s13 -= s20 * 683901
- s20 = 0
- s7 += s19 * 666643
- s8 += s19 * 470296
- s9 += s19 * 654183
- s10 -= s19 * 997805
- s11 += s19 * 136657
- s12 -= s19 * 683901
- s19 = 0
- s6 += s18 * 666643
- s7 += s18 * 470296
- s8 += s18 * 654183
- s9 -= s18 * 997805
- s10 += s18 * 136657
- s11 -= s18 * 683901
- s18 = 0
- carry[6] = (s6 + (1 << 20)) >> 21
- s7 += carry[6]
- s6 -= carry[6] << 21
- carry[8] = (s8 + (1 << 20)) >> 21
- s9 += carry[8]
- s8 -= carry[8] << 21
- carry[10] = (s10 + (1 << 20)) >> 21
- s11 += carry[10]
- s10 -= carry[10] << 21
- carry[12] = (s12 + (1 << 20)) >> 21
- s13 += carry[12]
- s12 -= carry[12] << 21
- carry[14] = (s14 + (1 << 20)) >> 21
- s15 += carry[14]
- s14 -= carry[14] << 21
- carry[16] = (s16 + (1 << 20)) >> 21
- s17 += carry[16]
- s16 -= carry[16] << 21
- carry[7] = (s7 + (1 << 20)) >> 21
- s8 += carry[7]
- s7 -= carry[7] << 21
- carry[9] = (s9 + (1 << 20)) >> 21
- s10 += carry[9]
- s9 -= carry[9] << 21
- carry[11] = (s11 + (1 << 20)) >> 21
- s12 += carry[11]
- s11 -= carry[11] << 21
- carry[13] = (s13 + (1 << 20)) >> 21
- s14 += carry[13]
- s13 -= carry[13] << 21
- carry[15] = (s15 + (1 << 20)) >> 21
- s16 += carry[15]
- s15 -= carry[15] << 21
- s5 += s17 * 666643
- s6 += s17 * 470296
- s7 += s17 * 654183
- s8 -= s17 * 997805
- s9 += s17 * 136657
- s10 -= s17 * 683901
- s17 = 0
- s4 += s16 * 666643
- s5 += s16 * 470296
- s6 += s16 * 654183
- s7 -= s16 * 997805
- s8 += s16 * 136657
- s9 -= s16 * 683901
- s16 = 0
- s3 += s15 * 666643
- s4 += s15 * 470296
- s5 += s15 * 654183
- s6 -= s15 * 997805
- s7 += s15 * 136657
- s8 -= s15 * 683901
- s15 = 0
- s2 += s14 * 666643
- s3 += s14 * 470296
- s4 += s14 * 654183
- s5 -= s14 * 997805
- s6 += s14 * 136657
- s7 -= s14 * 683901
- s14 = 0
- s1 += s13 * 666643
- s2 += s13 * 470296
- s3 += s13 * 654183
- s4 -= s13 * 997805
- s5 += s13 * 136657
- s6 -= s13 * 683901
- s13 = 0
- s0 += s12 * 666643
- s1 += s12 * 470296
- s2 += s12 * 654183
- s3 -= s12 * 997805
- s4 += s12 * 136657
- s5 -= s12 * 683901
- s12 = 0
- carry[0] = (s0 + (1 << 20)) >> 21
- s1 += carry[0]
- s0 -= carry[0] << 21
- carry[2] = (s2 + (1 << 20)) >> 21
- s3 += carry[2]
- s2 -= carry[2] << 21
- carry[4] = (s4 + (1 << 20)) >> 21
- s5 += carry[4]
- s4 -= carry[4] << 21
- carry[6] = (s6 + (1 << 20)) >> 21
- s7 += carry[6]
- s6 -= carry[6] << 21
- carry[8] = (s8 + (1 << 20)) >> 21
- s9 += carry[8]
- s8 -= carry[8] << 21
- carry[10] = (s10 + (1 << 20)) >> 21
- s11 += carry[10]
- s10 -= carry[10] << 21
- carry[1] = (s1 + (1 << 20)) >> 21
- s2 += carry[1]
- s1 -= carry[1] << 21
- carry[3] = (s3 + (1 << 20)) >> 21
- s4 += carry[3]
- s3 -= carry[3] << 21
- carry[5] = (s5 + (1 << 20)) >> 21
- s6 += carry[5]
- s5 -= carry[5] << 21
- carry[7] = (s7 + (1 << 20)) >> 21
- s8 += carry[7]
- s7 -= carry[7] << 21
- carry[9] = (s9 + (1 << 20)) >> 21
- s10 += carry[9]
- s9 -= carry[9] << 21
- carry[11] = (s11 + (1 << 20)) >> 21
- s12 += carry[11]
- s11 -= carry[11] << 21
- s0 += s12 * 666643
- s1 += s12 * 470296
- s2 += s12 * 654183
- s3 -= s12 * 997805
- s4 += s12 * 136657
- s5 -= s12 * 683901
- s12 = 0
- carry[0] = s0 >> 21
- s1 += carry[0]
- s0 -= carry[0] << 21
- carry[1] = s1 >> 21
- s2 += carry[1]
- s1 -= carry[1] << 21
- carry[2] = s2 >> 21
- s3 += carry[2]
- s2 -= carry[2] << 21
- carry[3] = s3 >> 21
- s4 += carry[3]
- s3 -= carry[3] << 21
- carry[4] = s4 >> 21
- s5 += carry[4]
- s4 -= carry[4] << 21
- carry[5] = s5 >> 21
- s6 += carry[5]
- s5 -= carry[5] << 21
- carry[6] = s6 >> 21
- s7 += carry[6]
- s6 -= carry[6] << 21
- carry[7] = s7 >> 21
- s8 += carry[7]
- s7 -= carry[7] << 21
- carry[8] = s8 >> 21
- s9 += carry[8]
- s8 -= carry[8] << 21
- carry[9] = s9 >> 21
- s10 += carry[9]
- s9 -= carry[9] << 21
- carry[10] = s10 >> 21
- s11 += carry[10]
- s10 -= carry[10] << 21
- carry[11] = s11 >> 21
- s12 += carry[11]
- s11 -= carry[11] << 21
- s0 += s12 * 666643
- s1 += s12 * 470296
- s2 += s12 * 654183
- s3 -= s12 * 997805
- s4 += s12 * 136657
- s5 -= s12 * 683901
- s12 = 0
- carry[0] = s0 >> 21
- s1 += carry[0]
- s0 -= carry[0] << 21
- carry[1] = s1 >> 21
- s2 += carry[1]
- s1 -= carry[1] << 21
- carry[2] = s2 >> 21
- s3 += carry[2]
- s2 -= carry[2] << 21
- carry[3] = s3 >> 21
- s4 += carry[3]
- s3 -= carry[3] << 21
- carry[4] = s4 >> 21
- s5 += carry[4]
- s4 -= carry[4] << 21
- carry[5] = s5 >> 21
- s6 += carry[5]
- s5 -= carry[5] << 21
- carry[6] = s6 >> 21
- s7 += carry[6]
- s6 -= carry[6] << 21
- carry[7] = s7 >> 21
- s8 += carry[7]
- s7 -= carry[7] << 21
- carry[8] = s8 >> 21
- s9 += carry[8]
- s8 -= carry[8] << 21
- carry[9] = s9 >> 21
- s10 += carry[9]
- s9 -= carry[9] << 21
- carry[10] = s10 >> 21
- s11 += carry[10]
- s10 -= carry[10] << 21
- s[0] = byte(s0 >> 0)
- s[1] = byte(s0 >> 8)
- s[2] = byte((s0 >> 16) | (s1 << 5))
- s[3] = byte(s1 >> 3)
- s[4] = byte(s1 >> 11)
- s[5] = byte((s1 >> 19) | (s2 << 2))
- s[6] = byte(s2 >> 6)
- s[7] = byte((s2 >> 14) | (s3 << 7))
- s[8] = byte(s3 >> 1)
- s[9] = byte(s3 >> 9)
- s[10] = byte((s3 >> 17) | (s4 << 4))
- s[11] = byte(s4 >> 4)
- s[12] = byte(s4 >> 12)
- s[13] = byte((s4 >> 20) | (s5 << 1))
- s[14] = byte(s5 >> 7)
- s[15] = byte((s5 >> 15) | (s6 << 6))
- s[16] = byte(s6 >> 2)
- s[17] = byte(s6 >> 10)
- s[18] = byte((s6 >> 18) | (s7 << 3))
- s[19] = byte(s7 >> 5)
- s[20] = byte(s7 >> 13)
- s[21] = byte(s8 >> 0)
- s[22] = byte(s8 >> 8)
- s[23] = byte((s8 >> 16) | (s9 << 5))
- s[24] = byte(s9 >> 3)
- s[25] = byte(s9 >> 11)
- s[26] = byte((s9 >> 19) | (s10 << 2))
- s[27] = byte(s10 >> 6)
- s[28] = byte((s10 >> 14) | (s11 << 7))
- s[29] = byte(s11 >> 1)
- s[30] = byte(s11 >> 9)
- s[31] = byte(s11 >> 17)
- }
- // Input:
- // s[0]+256*s[1]+...+256^63*s[63] = s
- //
- // Output:
- // s[0]+256*s[1]+...+256^31*s[31] = s mod l
- // where l = 2^252 + 27742317777372353535851937790883648493.
- func ScReduce(out *[32]byte, s *[64]byte) {
- s0 := 2097151 & load3(s[:])
- s1 := 2097151 & (load4(s[2:]) >> 5)
- s2 := 2097151 & (load3(s[5:]) >> 2)
- s3 := 2097151 & (load4(s[7:]) >> 7)
- s4 := 2097151 & (load4(s[10:]) >> 4)
- s5 := 2097151 & (load3(s[13:]) >> 1)
- s6 := 2097151 & (load4(s[15:]) >> 6)
- s7 := 2097151 & (load3(s[18:]) >> 3)
- s8 := 2097151 & load3(s[21:])
- s9 := 2097151 & (load4(s[23:]) >> 5)
- s10 := 2097151 & (load3(s[26:]) >> 2)
- s11 := 2097151 & (load4(s[28:]) >> 7)
- s12 := 2097151 & (load4(s[31:]) >> 4)
- s13 := 2097151 & (load3(s[34:]) >> 1)
- s14 := 2097151 & (load4(s[36:]) >> 6)
- s15 := 2097151 & (load3(s[39:]) >> 3)
- s16 := 2097151 & load3(s[42:])
- s17 := 2097151 & (load4(s[44:]) >> 5)
- s18 := 2097151 & (load3(s[47:]) >> 2)
- s19 := 2097151 & (load4(s[49:]) >> 7)
- s20 := 2097151 & (load4(s[52:]) >> 4)
- s21 := 2097151 & (load3(s[55:]) >> 1)
- s22 := 2097151 & (load4(s[57:]) >> 6)
- s23 := (load4(s[60:]) >> 3)
- s11 += s23 * 666643
- s12 += s23 * 470296
- s13 += s23 * 654183
- s14 -= s23 * 997805
- s15 += s23 * 136657
- s16 -= s23 * 683901
- s23 = 0
- s10 += s22 * 666643
- s11 += s22 * 470296
- s12 += s22 * 654183
- s13 -= s22 * 997805
- s14 += s22 * 136657
- s15 -= s22 * 683901
- s22 = 0
- s9 += s21 * 666643
- s10 += s21 * 470296
- s11 += s21 * 654183
- s12 -= s21 * 997805
- s13 += s21 * 136657
- s14 -= s21 * 683901
- s21 = 0
- s8 += s20 * 666643
- s9 += s20 * 470296
- s10 += s20 * 654183
- s11 -= s20 * 997805
- s12 += s20 * 136657
- s13 -= s20 * 683901
- s20 = 0
- s7 += s19 * 666643
- s8 += s19 * 470296
- s9 += s19 * 654183
- s10 -= s19 * 997805
- s11 += s19 * 136657
- s12 -= s19 * 683901
- s19 = 0
- s6 += s18 * 666643
- s7 += s18 * 470296
- s8 += s18 * 654183
- s9 -= s18 * 997805
- s10 += s18 * 136657
- s11 -= s18 * 683901
- s18 = 0
- var carry [17]int64
- carry[6] = (s6 + (1 << 20)) >> 21
- s7 += carry[6]
- s6 -= carry[6] << 21
- carry[8] = (s8 + (1 << 20)) >> 21
- s9 += carry[8]
- s8 -= carry[8] << 21
- carry[10] = (s10 + (1 << 20)) >> 21
- s11 += carry[10]
- s10 -= carry[10] << 21
- carry[12] = (s12 + (1 << 20)) >> 21
- s13 += carry[12]
- s12 -= carry[12] << 21
- carry[14] = (s14 + (1 << 20)) >> 21
- s15 += carry[14]
- s14 -= carry[14] << 21
- carry[16] = (s16 + (1 << 20)) >> 21
- s17 += carry[16]
- s16 -= carry[16] << 21
- carry[7] = (s7 + (1 << 20)) >> 21
- s8 += carry[7]
- s7 -= carry[7] << 21
- carry[9] = (s9 + (1 << 20)) >> 21
- s10 += carry[9]
- s9 -= carry[9] << 21
- carry[11] = (s11 + (1 << 20)) >> 21
- s12 += carry[11]
- s11 -= carry[11] << 21
- carry[13] = (s13 + (1 << 20)) >> 21
- s14 += carry[13]
- s13 -= carry[13] << 21
- carry[15] = (s15 + (1 << 20)) >> 21
- s16 += carry[15]
- s15 -= carry[15] << 21
- s5 += s17 * 666643
- s6 += s17 * 470296
- s7 += s17 * 654183
- s8 -= s17 * 997805
- s9 += s17 * 136657
- s10 -= s17 * 683901
- s17 = 0
- s4 += s16 * 666643
- s5 += s16 * 470296
- s6 += s16 * 654183
- s7 -= s16 * 997805
- s8 += s16 * 136657
- s9 -= s16 * 683901
- s16 = 0
- s3 += s15 * 666643
- s4 += s15 * 470296
- s5 += s15 * 654183
- s6 -= s15 * 997805
- s7 += s15 * 136657
- s8 -= s15 * 683901
- s15 = 0
- s2 += s14 * 666643
- s3 += s14 * 470296
- s4 += s14 * 654183
- s5 -= s14 * 997805
- s6 += s14 * 136657
- s7 -= s14 * 683901
- s14 = 0
- s1 += s13 * 666643
- s2 += s13 * 470296
- s3 += s13 * 654183
- s4 -= s13 * 997805
- s5 += s13 * 136657
- s6 -= s13 * 683901
- s13 = 0
- s0 += s12 * 666643
- s1 += s12 * 470296
- s2 += s12 * 654183
- s3 -= s12 * 997805
- s4 += s12 * 136657
- s5 -= s12 * 683901
- s12 = 0
- carry[0] = (s0 + (1 << 20)) >> 21
- s1 += carry[0]
- s0 -= carry[0] << 21
- carry[2] = (s2 + (1 << 20)) >> 21
- s3 += carry[2]
- s2 -= carry[2] << 21
- carry[4] = (s4 + (1 << 20)) >> 21
- s5 += carry[4]
- s4 -= carry[4] << 21
- carry[6] = (s6 + (1 << 20)) >> 21
- s7 += carry[6]
- s6 -= carry[6] << 21
- carry[8] = (s8 + (1 << 20)) >> 21
- s9 += carry[8]
- s8 -= carry[8] << 21
- carry[10] = (s10 + (1 << 20)) >> 21
- s11 += carry[10]
- s10 -= carry[10] << 21
- carry[1] = (s1 + (1 << 20)) >> 21
- s2 += carry[1]
- s1 -= carry[1] << 21
- carry[3] = (s3 + (1 << 20)) >> 21
- s4 += carry[3]
- s3 -= carry[3] << 21
- carry[5] = (s5 + (1 << 20)) >> 21
- s6 += carry[5]
- s5 -= carry[5] << 21
- carry[7] = (s7 + (1 << 20)) >> 21
- s8 += carry[7]
- s7 -= carry[7] << 21
- carry[9] = (s9 + (1 << 20)) >> 21
- s10 += carry[9]
- s9 -= carry[9] << 21
- carry[11] = (s11 + (1 << 20)) >> 21
- s12 += carry[11]
- s11 -= carry[11] << 21
- s0 += s12 * 666643
- s1 += s12 * 470296
- s2 += s12 * 654183
- s3 -= s12 * 997805
- s4 += s12 * 136657
- s5 -= s12 * 683901
- s12 = 0
- carry[0] = s0 >> 21
- s1 += carry[0]
- s0 -= carry[0] << 21
- carry[1] = s1 >> 21
- s2 += carry[1]
- s1 -= carry[1] << 21
- carry[2] = s2 >> 21
- s3 += carry[2]
- s2 -= carry[2] << 21
- carry[3] = s3 >> 21
- s4 += carry[3]
- s3 -= carry[3] << 21
- carry[4] = s4 >> 21
- s5 += carry[4]
- s4 -= carry[4] << 21
- carry[5] = s5 >> 21
- s6 += carry[5]
- s5 -= carry[5] << 21
- carry[6] = s6 >> 21
- s7 += carry[6]
- s6 -= carry[6] << 21
- carry[7] = s7 >> 21
- s8 += carry[7]
- s7 -= carry[7] << 21
- carry[8] = s8 >> 21
- s9 += carry[8]
- s8 -= carry[8] << 21
- carry[9] = s9 >> 21
- s10 += carry[9]
- s9 -= carry[9] << 21
- carry[10] = s10 >> 21
- s11 += carry[10]
- s10 -= carry[10] << 21
- carry[11] = s11 >> 21
- s12 += carry[11]
- s11 -= carry[11] << 21
- s0 += s12 * 666643
- s1 += s12 * 470296
- s2 += s12 * 654183
- s3 -= s12 * 997805
- s4 += s12 * 136657
- s5 -= s12 * 683901
- s12 = 0
- carry[0] = s0 >> 21
- s1 += carry[0]
- s0 -= carry[0] << 21
- carry[1] = s1 >> 21
- s2 += carry[1]
- s1 -= carry[1] << 21
- carry[2] = s2 >> 21
- s3 += carry[2]
- s2 -= carry[2] << 21
- carry[3] = s3 >> 21
- s4 += carry[3]
- s3 -= carry[3] << 21
- carry[4] = s4 >> 21
- s5 += carry[4]
- s4 -= carry[4] << 21
- carry[5] = s5 >> 21
- s6 += carry[5]
- s5 -= carry[5] << 21
- carry[6] = s6 >> 21
- s7 += carry[6]
- s6 -= carry[6] << 21
- carry[7] = s7 >> 21
- s8 += carry[7]
- s7 -= carry[7] << 21
- carry[8] = s8 >> 21
- s9 += carry[8]
- s8 -= carry[8] << 21
- carry[9] = s9 >> 21
- s10 += carry[9]
- s9 -= carry[9] << 21
- carry[10] = s10 >> 21
- s11 += carry[10]
- s10 -= carry[10] << 21
- out[0] = byte(s0 >> 0)
- out[1] = byte(s0 >> 8)
- out[2] = byte((s0 >> 16) | (s1 << 5))
- out[3] = byte(s1 >> 3)
- out[4] = byte(s1 >> 11)
- out[5] = byte((s1 >> 19) | (s2 << 2))
- out[6] = byte(s2 >> 6)
- out[7] = byte((s2 >> 14) | (s3 << 7))
- out[8] = byte(s3 >> 1)
- out[9] = byte(s3 >> 9)
- out[10] = byte((s3 >> 17) | (s4 << 4))
- out[11] = byte(s4 >> 4)
- out[12] = byte(s4 >> 12)
- out[13] = byte((s4 >> 20) | (s5 << 1))
- out[14] = byte(s5 >> 7)
- out[15] = byte((s5 >> 15) | (s6 << 6))
- out[16] = byte(s6 >> 2)
- out[17] = byte(s6 >> 10)
- out[18] = byte((s6 >> 18) | (s7 << 3))
- out[19] = byte(s7 >> 5)
- out[20] = byte(s7 >> 13)
- out[21] = byte(s8 >> 0)
- out[22] = byte(s8 >> 8)
- out[23] = byte((s8 >> 16) | (s9 << 5))
- out[24] = byte(s9 >> 3)
- out[25] = byte(s9 >> 11)
- out[26] = byte((s9 >> 19) | (s10 << 2))
- out[27] = byte(s10 >> 6)
- out[28] = byte((s10 >> 14) | (s11 << 7))
- out[29] = byte(s11 >> 1)
- out[30] = byte(s11 >> 9)
- out[31] = byte(s11 >> 17)
- }
- // order is the order of Curve25519 in little-endian form.
- var order = [4]uint64{0x5812631a5cf5d3ed, 0x14def9dea2f79cd6, 0, 0x1000000000000000}
- // ScMinimal returns true if the given scalar is less than the order of the
- // curve.
- func ScMinimal(scalar *[32]byte) bool {
- for i := 3; ; i-- {
- v := binary.LittleEndian.Uint64(scalar[i*8:])
- if v > order[i] {
- return false
- } else if v < order[i] {
- break
- } else if i == 0 {
- return false
- }
- }
- return true
- }
|