data_set_distances.go 2.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. package stats
  2. import (
  3. "math"
  4. )
  5. // Validate data for distance calculation
  6. func validateData(dataPointX, dataPointY []float64) error {
  7. if len(dataPointX) == 0 || len(dataPointY) == 0 {
  8. return EmptyInput
  9. }
  10. if len(dataPointX) != len(dataPointY) {
  11. return SizeErr
  12. }
  13. return nil
  14. }
  15. // Computes Chebyshev distance between two data sets
  16. func ChebyshevDistance(dataPointX, dataPointY []float64) (distance float64, err error) {
  17. err = validateData(dataPointX, dataPointY)
  18. if err != nil {
  19. return math.NaN(), err
  20. }
  21. var tempDistance float64
  22. for i := 0; i < len(dataPointY); i++ {
  23. tempDistance = math.Abs(dataPointX[i] - dataPointY[i])
  24. if distance < tempDistance {
  25. distance = tempDistance
  26. }
  27. }
  28. return distance, nil
  29. }
  30. //
  31. // Computes Euclidean distance between two data sets
  32. //
  33. func EuclideanDistance(dataPointX, dataPointY []float64) (distance float64, err error) {
  34. err = validateData(dataPointX, dataPointY)
  35. if err != nil {
  36. return math.NaN(), err
  37. }
  38. distance = 0
  39. for i := 0; i < len(dataPointX); i++ {
  40. distance = distance + ((dataPointX[i] - dataPointY[i]) * (dataPointX[i] - dataPointY[i]))
  41. }
  42. return math.Sqrt(distance), nil
  43. }
  44. //
  45. // Computes Manhattan distance between two data sets
  46. //
  47. func ManhattanDistance(dataPointX, dataPointY []float64) (distance float64, err error) {
  48. err = validateData(dataPointX, dataPointY)
  49. if err != nil {
  50. return math.NaN(), err
  51. }
  52. distance = 0
  53. for i := 0; i < len(dataPointX); i++ {
  54. distance = distance + math.Abs(dataPointX[i]-dataPointY[i])
  55. }
  56. return distance, nil
  57. }
  58. //
  59. // Computes minkowski distance between two data sets.
  60. //
  61. // Input:
  62. // dataPointX: First set of data points
  63. // dataPointY: Second set of data points. Length of both data
  64. // sets must be equal.
  65. // lambda: aka p or city blocks; With lambda = 1
  66. // returned distance is manhattan distance and
  67. // lambda = 2; it is euclidean distance. Lambda
  68. // reaching to infinite - distance would be chebysev
  69. // distance.
  70. // Output:
  71. // Distance or error
  72. //
  73. func MinkowskiDistance(dataPointX, dataPointY []float64, lambda float64) (distance float64, err error) {
  74. err = validateData(dataPointX, dataPointY)
  75. if err != nil {
  76. return math.NaN(), err
  77. }
  78. for i := 0; i < len(dataPointY); i++ {
  79. distance = distance + math.Pow(math.Abs(dataPointX[i]-dataPointY[i]), lambda)
  80. }
  81. distance = math.Pow(distance, float64(1/lambda))
  82. if math.IsInf(distance, 1) == true {
  83. return math.NaN(), InfValue
  84. }
  85. return distance, nil
  86. }