diff.go 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. // Copyright 2017, The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE.md file.
  4. // Package diff implements an algorithm for producing edit-scripts.
  5. // The edit-script is a sequence of operations needed to transform one list
  6. // of symbols into another (or vice-versa). The edits allowed are insertions,
  7. // deletions, and modifications. The summation of all edits is called the
  8. // Levenshtein distance as this problem is well-known in computer science.
  9. //
  10. // This package prioritizes performance over accuracy. That is, the run time
  11. // is more important than obtaining a minimal Levenshtein distance.
  12. package diff
  13. // EditType represents a single operation within an edit-script.
  14. type EditType uint8
  15. const (
  16. // Identity indicates that a symbol pair is identical in both list X and Y.
  17. Identity EditType = iota
  18. // UniqueX indicates that a symbol only exists in X and not Y.
  19. UniqueX
  20. // UniqueY indicates that a symbol only exists in Y and not X.
  21. UniqueY
  22. // Modified indicates that a symbol pair is a modification of each other.
  23. Modified
  24. )
  25. // EditScript represents the series of differences between two lists.
  26. type EditScript []EditType
  27. // String returns a human-readable string representing the edit-script where
  28. // Identity, UniqueX, UniqueY, and Modified are represented by the
  29. // '.', 'X', 'Y', and 'M' characters, respectively.
  30. func (es EditScript) String() string {
  31. b := make([]byte, len(es))
  32. for i, e := range es {
  33. switch e {
  34. case Identity:
  35. b[i] = '.'
  36. case UniqueX:
  37. b[i] = 'X'
  38. case UniqueY:
  39. b[i] = 'Y'
  40. case Modified:
  41. b[i] = 'M'
  42. default:
  43. panic("invalid edit-type")
  44. }
  45. }
  46. return string(b)
  47. }
  48. // stats returns a histogram of the number of each type of edit operation.
  49. func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) {
  50. for _, e := range es {
  51. switch e {
  52. case Identity:
  53. s.NI++
  54. case UniqueX:
  55. s.NX++
  56. case UniqueY:
  57. s.NY++
  58. case Modified:
  59. s.NM++
  60. default:
  61. panic("invalid edit-type")
  62. }
  63. }
  64. return
  65. }
  66. // Dist is the Levenshtein distance and is guaranteed to be 0 if and only if
  67. // lists X and Y are equal.
  68. func (es EditScript) Dist() int { return len(es) - es.stats().NI }
  69. // LenX is the length of the X list.
  70. func (es EditScript) LenX() int { return len(es) - es.stats().NY }
  71. // LenY is the length of the Y list.
  72. func (es EditScript) LenY() int { return len(es) - es.stats().NX }
  73. // EqualFunc reports whether the symbols at indexes ix and iy are equal.
  74. // When called by Difference, the index is guaranteed to be within nx and ny.
  75. type EqualFunc func(ix int, iy int) Result
  76. // Result is the result of comparison.
  77. // NSame is the number of sub-elements that are equal.
  78. // NDiff is the number of sub-elements that are not equal.
  79. type Result struct{ NSame, NDiff int }
  80. // Equal indicates whether the symbols are equal. Two symbols are equal
  81. // if and only if NDiff == 0. If Equal, then they are also Similar.
  82. func (r Result) Equal() bool { return r.NDiff == 0 }
  83. // Similar indicates whether two symbols are similar and may be represented
  84. // by using the Modified type. As a special case, we consider binary comparisons
  85. // (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar.
  86. //
  87. // The exact ratio of NSame to NDiff to determine similarity may change.
  88. func (r Result) Similar() bool {
  89. // Use NSame+1 to offset NSame so that binary comparisons are similar.
  90. return r.NSame+1 >= r.NDiff
  91. }
  92. // Difference reports whether two lists of lengths nx and ny are equal
  93. // given the definition of equality provided as f.
  94. //
  95. // This function returns an edit-script, which is a sequence of operations
  96. // needed to convert one list into the other. The following invariants for
  97. // the edit-script are maintained:
  98. // • eq == (es.Dist()==0)
  99. // • nx == es.LenX()
  100. // • ny == es.LenY()
  101. //
  102. // This algorithm is not guaranteed to be an optimal solution (i.e., one that
  103. // produces an edit-script with a minimal Levenshtein distance). This algorithm
  104. // favors performance over optimality. The exact output is not guaranteed to
  105. // be stable and may change over time.
  106. func Difference(nx, ny int, f EqualFunc) (es EditScript) {
  107. // This algorithm is based on traversing what is known as an "edit-graph".
  108. // See Figure 1 from "An O(ND) Difference Algorithm and Its Variations"
  109. // by Eugene W. Myers. Since D can be as large as N itself, this is
  110. // effectively O(N^2). Unlike the algorithm from that paper, we are not
  111. // interested in the optimal path, but at least some "decent" path.
  112. //
  113. // For example, let X and Y be lists of symbols:
  114. // X = [A B C A B B A]
  115. // Y = [C B A B A C]
  116. //
  117. // The edit-graph can be drawn as the following:
  118. // A B C A B B A
  119. // ┌─────────────┐
  120. // C │_|_|\|_|_|_|_│ 0
  121. // B │_|\|_|_|\|\|_│ 1
  122. // A │\|_|_|\|_|_|\│ 2
  123. // B │_|\|_|_|\|\|_│ 3
  124. // A │\|_|_|\|_|_|\│ 4
  125. // C │ | |\| | | | │ 5
  126. // └─────────────┘ 6
  127. // 0 1 2 3 4 5 6 7
  128. //
  129. // List X is written along the horizontal axis, while list Y is written
  130. // along the vertical axis. At any point on this grid, if the symbol in
  131. // list X matches the corresponding symbol in list Y, then a '\' is drawn.
  132. // The goal of any minimal edit-script algorithm is to find a path from the
  133. // top-left corner to the bottom-right corner, while traveling through the
  134. // fewest horizontal or vertical edges.
  135. // A horizontal edge is equivalent to inserting a symbol from list X.
  136. // A vertical edge is equivalent to inserting a symbol from list Y.
  137. // A diagonal edge is equivalent to a matching symbol between both X and Y.
  138. // Invariants:
  139. // • 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx
  140. // • 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny
  141. //
  142. // In general:
  143. // • fwdFrontier.X < revFrontier.X
  144. // • fwdFrontier.Y < revFrontier.Y
  145. // Unless, it is time for the algorithm to terminate.
  146. fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)}
  147. revPath := path{-1, point{nx, ny}, make(EditScript, 0)}
  148. fwdFrontier := fwdPath.point // Forward search frontier
  149. revFrontier := revPath.point // Reverse search frontier
  150. // Search budget bounds the cost of searching for better paths.
  151. // The longest sequence of non-matching symbols that can be tolerated is
  152. // approximately the square-root of the search budget.
  153. searchBudget := 4 * (nx + ny) // O(n)
  154. // The algorithm below is a greedy, meet-in-the-middle algorithm for
  155. // computing sub-optimal edit-scripts between two lists.
  156. //
  157. // The algorithm is approximately as follows:
  158. // • Searching for differences switches back-and-forth between
  159. // a search that starts at the beginning (the top-left corner), and
  160. // a search that starts at the end (the bottom-right corner). The goal of
  161. // the search is connect with the search from the opposite corner.
  162. // • As we search, we build a path in a greedy manner, where the first
  163. // match seen is added to the path (this is sub-optimal, but provides a
  164. // decent result in practice). When matches are found, we try the next pair
  165. // of symbols in the lists and follow all matches as far as possible.
  166. // • When searching for matches, we search along a diagonal going through
  167. // through the "frontier" point. If no matches are found, we advance the
  168. // frontier towards the opposite corner.
  169. // • This algorithm terminates when either the X coordinates or the
  170. // Y coordinates of the forward and reverse frontier points ever intersect.
  171. //
  172. // This algorithm is correct even if searching only in the forward direction
  173. // or in the reverse direction. We do both because it is commonly observed
  174. // that two lists commonly differ because elements were added to the front
  175. // or end of the other list.
  176. //
  177. // Running the tests with the "debug" build tag prints a visualization of
  178. // the algorithm running in real-time. This is educational for understanding
  179. // how the algorithm works. See debug_enable.go.
  180. f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
  181. for {
  182. // Forward search from the beginning.
  183. if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
  184. break
  185. }
  186. for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
  187. // Search in a diagonal pattern for a match.
  188. z := zigzag(i)
  189. p := point{fwdFrontier.X + z, fwdFrontier.Y - z}
  190. switch {
  191. case p.X >= revPath.X || p.Y < fwdPath.Y:
  192. stop1 = true // Hit top-right corner
  193. case p.Y >= revPath.Y || p.X < fwdPath.X:
  194. stop2 = true // Hit bottom-left corner
  195. case f(p.X, p.Y).Equal():
  196. // Match found, so connect the path to this point.
  197. fwdPath.connect(p, f)
  198. fwdPath.append(Identity)
  199. // Follow sequence of matches as far as possible.
  200. for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
  201. if !f(fwdPath.X, fwdPath.Y).Equal() {
  202. break
  203. }
  204. fwdPath.append(Identity)
  205. }
  206. fwdFrontier = fwdPath.point
  207. stop1, stop2 = true, true
  208. default:
  209. searchBudget-- // Match not found
  210. }
  211. debug.Update()
  212. }
  213. // Advance the frontier towards reverse point.
  214. if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y {
  215. fwdFrontier.X++
  216. } else {
  217. fwdFrontier.Y++
  218. }
  219. // Reverse search from the end.
  220. if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
  221. break
  222. }
  223. for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
  224. // Search in a diagonal pattern for a match.
  225. z := zigzag(i)
  226. p := point{revFrontier.X - z, revFrontier.Y + z}
  227. switch {
  228. case fwdPath.X >= p.X || revPath.Y < p.Y:
  229. stop1 = true // Hit bottom-left corner
  230. case fwdPath.Y >= p.Y || revPath.X < p.X:
  231. stop2 = true // Hit top-right corner
  232. case f(p.X-1, p.Y-1).Equal():
  233. // Match found, so connect the path to this point.
  234. revPath.connect(p, f)
  235. revPath.append(Identity)
  236. // Follow sequence of matches as far as possible.
  237. for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
  238. if !f(revPath.X-1, revPath.Y-1).Equal() {
  239. break
  240. }
  241. revPath.append(Identity)
  242. }
  243. revFrontier = revPath.point
  244. stop1, stop2 = true, true
  245. default:
  246. searchBudget-- // Match not found
  247. }
  248. debug.Update()
  249. }
  250. // Advance the frontier towards forward point.
  251. if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y {
  252. revFrontier.X--
  253. } else {
  254. revFrontier.Y--
  255. }
  256. }
  257. // Join the forward and reverse paths and then append the reverse path.
  258. fwdPath.connect(revPath.point, f)
  259. for i := len(revPath.es) - 1; i >= 0; i-- {
  260. t := revPath.es[i]
  261. revPath.es = revPath.es[:i]
  262. fwdPath.append(t)
  263. }
  264. debug.Finish()
  265. return fwdPath.es
  266. }
  267. type path struct {
  268. dir int // +1 if forward, -1 if reverse
  269. point // Leading point of the EditScript path
  270. es EditScript
  271. }
  272. // connect appends any necessary Identity, Modified, UniqueX, or UniqueY types
  273. // to the edit-script to connect p.point to dst.
  274. func (p *path) connect(dst point, f EqualFunc) {
  275. if p.dir > 0 {
  276. // Connect in forward direction.
  277. for dst.X > p.X && dst.Y > p.Y {
  278. switch r := f(p.X, p.Y); {
  279. case r.Equal():
  280. p.append(Identity)
  281. case r.Similar():
  282. p.append(Modified)
  283. case dst.X-p.X >= dst.Y-p.Y:
  284. p.append(UniqueX)
  285. default:
  286. p.append(UniqueY)
  287. }
  288. }
  289. for dst.X > p.X {
  290. p.append(UniqueX)
  291. }
  292. for dst.Y > p.Y {
  293. p.append(UniqueY)
  294. }
  295. } else {
  296. // Connect in reverse direction.
  297. for p.X > dst.X && p.Y > dst.Y {
  298. switch r := f(p.X-1, p.Y-1); {
  299. case r.Equal():
  300. p.append(Identity)
  301. case r.Similar():
  302. p.append(Modified)
  303. case p.Y-dst.Y >= p.X-dst.X:
  304. p.append(UniqueY)
  305. default:
  306. p.append(UniqueX)
  307. }
  308. }
  309. for p.X > dst.X {
  310. p.append(UniqueX)
  311. }
  312. for p.Y > dst.Y {
  313. p.append(UniqueY)
  314. }
  315. }
  316. }
  317. func (p *path) append(t EditType) {
  318. p.es = append(p.es, t)
  319. switch t {
  320. case Identity, Modified:
  321. p.add(p.dir, p.dir)
  322. case UniqueX:
  323. p.add(p.dir, 0)
  324. case UniqueY:
  325. p.add(0, p.dir)
  326. }
  327. debug.Update()
  328. }
  329. type point struct{ X, Y int }
  330. func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy }
  331. // zigzag maps a consecutive sequence of integers to a zig-zag sequence.
  332. // [0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...]
  333. func zigzag(x int) int {
  334. if x&1 != 0 {
  335. x = ^x
  336. }
  337. return x >> 1
  338. }