// Package decimal implements an arbitrary precision fixed-point decimal. // // To use as part of a struct: // // type Struct struct { // Number Decimal // } // // The zero-value of a Decimal is 0, as you would expect. // // The best way to create a new Decimal is to use decimal.NewFromString, ex: // // n, err := decimal.NewFromString("-123.4567") // n.String() // output: "-123.4567" // // NOTE: This can "only" represent numbers with a maximum of 2^31 digits // after the decimal point. package decimal import ( "database/sql/driver" "encoding/binary" "fmt" "math" "math/big" "strconv" "strings" ) // DivisionPrecision is the number of decimal places in the result when it // doesn't divide exactly. // // Example: // // d1 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3) // d1.String() // output: "0.6666666666666667" // d2 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(30000) // d2.String() // output: "0.0000666666666667" // d3 := decimal.NewFromFloat(20000).Div(decimal.NewFromFloat(3) // d3.String() // output: "6666.6666666666666667" // decimal.DivisionPrecision = 3 // d4 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3) // d4.String() // output: "0.667" // var DivisionPrecision = 16 // MarshalJSONWithoutQuotes should be set to true if you want the decimal to // be JSON marshaled as a number, instead of as a string. // WARNING: this is dangerous for decimals with many digits, since many JSON // unmarshallers (ex: Javascript's) will unmarshal JSON numbers to IEEE 754 // double-precision floating point numbers, which means you can potentially // silently lose precision. var MarshalJSONWithoutQuotes = false // Zero constant, to make computations faster. var Zero = New(0, 1) // fiveDec used in Cash Rounding var fiveDec = New(5, 0) var zeroInt = big.NewInt(0) var oneInt = big.NewInt(1) var twoInt = big.NewInt(2) var fourInt = big.NewInt(4) var fiveInt = big.NewInt(5) var tenInt = big.NewInt(10) var twentyInt = big.NewInt(20) // Decimal represents a fixed-point decimal. It is immutable. // number = value * 10 ^ exp type Decimal struct { value *big.Int // NOTE(vadim): this must be an int32, because we cast it to float64 during // calculations. If exp is 64 bit, we might lose precision. // If we cared about being able to represent every possible decimal, we // could make exp a *big.Int but it would hurt performance and numbers // like that are unrealistic. exp int32 } // New returns a new fixed-point decimal, value * 10 ^ exp. func New(value int64, exp int32) Decimal { return Decimal{ value: big.NewInt(value), exp: exp, } } // NewFromBigInt returns a new Decimal from a big.Int, value * 10 ^ exp func NewFromBigInt(value *big.Int, exp int32) Decimal { return Decimal{ value: big.NewInt(0).Set(value), exp: exp, } } // NewFromString returns a new Decimal from a string representation. // // Example: // // d, err := NewFromString("-123.45") // d2, err := NewFromString(".0001") // func NewFromString(value string) (Decimal, error) { originalInput := value var intString string var exp int64 // Check if number is using scientific notation eIndex := strings.IndexAny(value, "Ee") if eIndex != -1 { expInt, err := strconv.ParseInt(value[eIndex+1:], 10, 32) if err != nil { if e, ok := err.(*strconv.NumError); ok && e.Err == strconv.ErrRange { return Decimal{}, fmt.Errorf("can't convert %s to decimal: fractional part too long", value) } return Decimal{}, fmt.Errorf("can't convert %s to decimal: exponent is not numeric", value) } value = value[:eIndex] exp = expInt } parts := strings.Split(value, ".") if len(parts) == 1 { // There is no decimal point, we can just parse the original string as // an int intString = value } else if len(parts) == 2 { // strip the insignificant digits for more accurate comparisons. decimalPart := strings.TrimRight(parts[1], "0") intString = parts[0] + decimalPart expInt := -len(decimalPart) exp += int64(expInt) } else { return Decimal{}, fmt.Errorf("can't convert %s to decimal: too many .s", value) } dValue := new(big.Int) _, ok := dValue.SetString(intString, 10) if !ok { return Decimal{}, fmt.Errorf("can't convert %s to decimal", value) } if exp < math.MinInt32 || exp > math.MaxInt32 { // NOTE(vadim): I doubt a string could realistically be this long return Decimal{}, fmt.Errorf("can't convert %s to decimal: fractional part too long", originalInput) } return Decimal{ value: dValue, exp: int32(exp), }, nil } // RequireFromString returns a new Decimal from a string representation // or panics if NewFromString would have returned an error. // // Example: // // d := RequireFromString("-123.45") // d2 := RequireFromString(".0001") // func RequireFromString(value string) Decimal { dec, err := NewFromString(value) if err != nil { panic(err) } return dec } // NewFromFloat converts a float64 to Decimal. // // Example: // // NewFromFloat(123.45678901234567).String() // output: "123.4567890123456" // NewFromFloat(.00000000000000001).String() // output: "0.00000000000000001" // // NOTE: some float64 numbers can take up about 300 bytes of memory in decimal representation. // Consider using NewFromFloatWithExponent if space is more important than precision. // // NOTE: this will panic on NaN, +/-inf func NewFromFloat(value float64) Decimal { return NewFromFloatWithExponent(value, math.MinInt32) } // NewFromFloatWithExponent converts a float64 to Decimal, with an arbitrary // number of fractional digits. // // Example: // // NewFromFloatWithExponent(123.456, -2).String() // output: "123.46" // func NewFromFloatWithExponent(value float64, exp int32) Decimal { if math.IsNaN(value) || math.IsInf(value, 0) { panic(fmt.Sprintf("Cannot create a Decimal from %v", value)) } bits := math.Float64bits(value) mant := bits & (1<<52 - 1) exp2 := int32((bits >> 52) & (1<<11 - 1)) sign := bits >> 63 if exp2 == 0 { // specials if mant == 0 { return Decimal{} } else { // subnormal exp2++ } } else { // normal mant |= 1 << 52 } exp2 -= 1023 + 52 // normalizing base-2 values for mant&1 == 0 { mant = mant >> 1 exp2++ } // maximum number of fractional base-10 digits to represent 2^N exactly cannot be more than -N if N<0 if exp < 0 && exp < exp2 { if exp2 < 0 { exp = exp2 } else { exp = 0 } } // representing 10^M * 2^N as 5^M * 2^(M+N) exp2 -= exp temp := big.NewInt(1) dMant := big.NewInt(int64(mant)) // applying 5^M if exp > 0 { temp = temp.SetInt64(int64(exp)) temp = temp.Exp(fiveInt, temp, nil) } else if exp < 0 { temp = temp.SetInt64(-int64(exp)) temp = temp.Exp(fiveInt, temp, nil) dMant = dMant.Mul(dMant, temp) temp = temp.SetUint64(1) } // applying 2^(M+N) if exp2 > 0 { dMant = dMant.Lsh(dMant, uint(exp2)) } else if exp2 < 0 { temp = temp.Lsh(temp, uint(-exp2)) } // rounding and downscaling if exp > 0 || exp2 < 0 { halfDown := new(big.Int).Rsh(temp, 1) dMant = dMant.Add(dMant, halfDown) dMant = dMant.Quo(dMant, temp) } if sign == 1 { dMant = dMant.Neg(dMant) } return Decimal{ value: dMant, exp: exp, } } // rescale returns a rescaled version of the decimal. Returned // decimal may be less precise if the given exponent is bigger // than the initial exponent of the Decimal. // NOTE: this will truncate, NOT round // // Example: // // d := New(12345, -4) // d2 := d.rescale(-1) // d3 := d2.rescale(-4) // println(d1) // println(d2) // println(d3) // // Output: // // 1.2345 // 1.2 // 1.2000 // func (d Decimal) rescale(exp int32) Decimal { d.ensureInitialized() // NOTE(vadim): must convert exps to float64 before - to prevent overflow diff := math.Abs(float64(exp) - float64(d.exp)) value := new(big.Int).Set(d.value) expScale := new(big.Int).Exp(tenInt, big.NewInt(int64(diff)), nil) if exp > d.exp { value = value.Quo(value, expScale) } else if exp < d.exp { value = value.Mul(value, expScale) } return Decimal{ value: value, exp: exp, } } // Abs returns the absolute value of the decimal. func (d Decimal) Abs() Decimal { d.ensureInitialized() d2Value := new(big.Int).Abs(d.value) return Decimal{ value: d2Value, exp: d.exp, } } // Add returns d + d2. func (d Decimal) Add(d2 Decimal) Decimal { baseScale := min(d.exp, d2.exp) rd := d.rescale(baseScale) rd2 := d2.rescale(baseScale) d3Value := new(big.Int).Add(rd.value, rd2.value) return Decimal{ value: d3Value, exp: baseScale, } } // Sub returns d - d2. func (d Decimal) Sub(d2 Decimal) Decimal { baseScale := min(d.exp, d2.exp) rd := d.rescale(baseScale) rd2 := d2.rescale(baseScale) d3Value := new(big.Int).Sub(rd.value, rd2.value) return Decimal{ value: d3Value, exp: baseScale, } } // Neg returns -d. func (d Decimal) Neg() Decimal { d.ensureInitialized() val := new(big.Int).Neg(d.value) return Decimal{ value: val, exp: d.exp, } } // Mul returns d * d2. func (d Decimal) Mul(d2 Decimal) Decimal { d.ensureInitialized() d2.ensureInitialized() expInt64 := int64(d.exp) + int64(d2.exp) if expInt64 > math.MaxInt32 || expInt64 < math.MinInt32 { // NOTE(vadim): better to panic than give incorrect results, as // Decimals are usually used for money panic(fmt.Sprintf("exponent %v overflows an int32!", expInt64)) } d3Value := new(big.Int).Mul(d.value, d2.value) return Decimal{ value: d3Value, exp: int32(expInt64), } } // Div returns d / d2. If it doesn't divide exactly, the result will have // DivisionPrecision digits after the decimal point. func (d Decimal) Div(d2 Decimal) Decimal { return d.DivRound(d2, int32(DivisionPrecision)) } // QuoRem does divsion with remainder // d.QuoRem(d2,precision) returns quotient q and remainder r such that // d = d2 * q + r, q an integer multiple of 10^(-precision) // 0 <= r < abs(d2) * 10 ^(-precision) if d>=0 // 0 >= r > -abs(d2) * 10 ^(-precision) if d<0 // Note that precision<0 is allowed as input. func (d Decimal) QuoRem(d2 Decimal, precision int32) (Decimal, Decimal) { d.ensureInitialized() d2.ensureInitialized() if d2.value.Sign() == 0 { panic("decimal division by 0") } scale := -precision e := int64(d.exp - d2.exp - scale) if e > math.MaxInt32 || e < math.MinInt32 { panic("overflow in decimal QuoRem") } var aa, bb, expo big.Int var scalerest int32 // d = a 10^ea // d2 = b 10^eb if e < 0 { aa = *d.value expo.SetInt64(-e) bb.Exp(tenInt, &expo, nil) bb.Mul(d2.value, &bb) scalerest = d.exp // now aa = a // bb = b 10^(scale + eb - ea) } else { expo.SetInt64(e) aa.Exp(tenInt, &expo, nil) aa.Mul(d.value, &aa) bb = *d2.value scalerest = scale + d2.exp // now aa = a ^ (ea - eb - scale) // bb = b } var q, r big.Int q.QuoRem(&aa, &bb, &r) dq := Decimal{value: &q, exp: scale} dr := Decimal{value: &r, exp: scalerest} return dq, dr } // DivRound divides and rounds to a given precision // i.e. to an integer multiple of 10^(-precision) // for a positive quotient digit 5 is rounded up, away from 0 // if the quotient is negative then digit 5 is rounded down, away from 0 // Note that precision<0 is allowed as input. func (d Decimal) DivRound(d2 Decimal, precision int32) Decimal { // QuoRem already checks initialization q, r := d.QuoRem(d2, precision) // the actual rounding decision is based on comparing r*10^precision and d2/2 // instead compare 2 r 10 ^precision and d2 var rv2 big.Int rv2.Abs(r.value) rv2.Lsh(&rv2, 1) // now rv2 = abs(r.value) * 2 r2 := Decimal{value: &rv2, exp: r.exp + precision} // r2 is now 2 * r * 10 ^ precision var c = r2.Cmp(d2.Abs()) if c < 0 { return q } if d.value.Sign()*d2.value.Sign() < 0 { return q.Sub(New(1, -precision)) } return q.Add(New(1, -precision)) } // Mod returns d % d2. func (d Decimal) Mod(d2 Decimal) Decimal { quo := d.Div(d2).Truncate(0) return d.Sub(d2.Mul(quo)) } // Pow returns d to the power d2 func (d Decimal) Pow(d2 Decimal) Decimal { var temp Decimal if d2.IntPart() == 0 { return NewFromFloat(1) } temp = d.Pow(d2.Div(NewFromFloat(2))) if d2.IntPart()%2 == 0 { return temp.Mul(temp) } if d2.IntPart() > 0 { return temp.Mul(temp).Mul(d) } return temp.Mul(temp).Div(d) } // Cmp compares the numbers represented by d and d2 and returns: // // -1 if d < d2 // 0 if d == d2 // +1 if d > d2 // func (d Decimal) Cmp(d2 Decimal) int { d.ensureInitialized() d2.ensureInitialized() if d.exp == d2.exp { return d.value.Cmp(d2.value) } baseExp := min(d.exp, d2.exp) rd := d.rescale(baseExp) rd2 := d2.rescale(baseExp) return rd.value.Cmp(rd2.value) } // Equal returns whether the numbers represented by d and d2 are equal. func (d Decimal) Equal(d2 Decimal) bool { return d.Cmp(d2) == 0 } // Equals is deprecated, please use Equal method instead func (d Decimal) Equals(d2 Decimal) bool { return d.Equal(d2) } // GreaterThan (GT) returns true when d is greater than d2. func (d Decimal) GreaterThan(d2 Decimal) bool { return d.Cmp(d2) == 1 } // GreaterThanOrEqual (GTE) returns true when d is greater than or equal to d2. func (d Decimal) GreaterThanOrEqual(d2 Decimal) bool { cmp := d.Cmp(d2) return cmp == 1 || cmp == 0 } // LessThan (LT) returns true when d is less than d2. func (d Decimal) LessThan(d2 Decimal) bool { return d.Cmp(d2) == -1 } // LessThanOrEqual (LTE) returns true when d is less than or equal to d2. func (d Decimal) LessThanOrEqual(d2 Decimal) bool { cmp := d.Cmp(d2) return cmp == -1 || cmp == 0 } // Sign returns: // // -1 if d < 0 // 0 if d == 0 // +1 if d > 0 // func (d Decimal) Sign() int { if d.value == nil { return 0 } return d.value.Sign() } // Exponent returns the exponent, or scale component of the decimal. func (d Decimal) Exponent() int32 { return d.exp } // Coefficient returns the coefficient of the decimal. It is scaled by 10^Exponent() func (d Decimal) Coefficient() *big.Int { // we copy the coefficient so that mutating the result does not mutate the // Decimal. return big.NewInt(0).Set(d.value) } // IntPart returns the integer component of the decimal. func (d Decimal) IntPart() int64 { scaledD := d.rescale(0) return scaledD.value.Int64() } // Rat returns a rational number representation of the decimal. func (d Decimal) Rat() *big.Rat { d.ensureInitialized() if d.exp <= 0 { // NOTE(vadim): must negate after casting to prevent int32 overflow denom := new(big.Int).Exp(tenInt, big.NewInt(-int64(d.exp)), nil) return new(big.Rat).SetFrac(d.value, denom) } mul := new(big.Int).Exp(tenInt, big.NewInt(int64(d.exp)), nil) num := new(big.Int).Mul(d.value, mul) return new(big.Rat).SetFrac(num, oneInt) } // Float64 returns the nearest float64 value for d and a bool indicating // whether f represents d exactly. // For more details, see the documentation for big.Rat.Float64 func (d Decimal) Float64() (f float64, exact bool) { return d.Rat().Float64() } // String returns the string representation of the decimal // with the fixed point. // // Example: // // d := New(-12345, -3) // println(d.String()) // // Output: // // -12.345 // func (d Decimal) String() string { return d.string(true) } // StringFixed returns a rounded fixed-point string with places digits after // the decimal point. // // Example: // // NewFromFloat(0).StringFixed(2) // output: "0.00" // NewFromFloat(0).StringFixed(0) // output: "0" // NewFromFloat(5.45).StringFixed(0) // output: "5" // NewFromFloat(5.45).StringFixed(1) // output: "5.5" // NewFromFloat(5.45).StringFixed(2) // output: "5.45" // NewFromFloat(5.45).StringFixed(3) // output: "5.450" // NewFromFloat(545).StringFixed(-1) // output: "550" // func (d Decimal) StringFixed(places int32) string { rounded := d.Round(places) return rounded.string(false) } // StringFixedBank returns a banker rounded fixed-point string with places digits // after the decimal point. // // Example: // // NewFromFloat(0).StringFixed(2) // output: "0.00" // NewFromFloat(0).StringFixed(0) // output: "0" // NewFromFloat(5.45).StringFixed(0) // output: "5" // NewFromFloat(5.45).StringFixed(1) // output: "5.4" // NewFromFloat(5.45).StringFixed(2) // output: "5.45" // NewFromFloat(5.45).StringFixed(3) // output: "5.450" // NewFromFloat(545).StringFixed(-1) // output: "550" // func (d Decimal) StringFixedBank(places int32) string { rounded := d.RoundBank(places) return rounded.string(false) } // StringFixedCash returns a Swedish/Cash rounded fixed-point string. For // more details see the documentation at function RoundCash. func (d Decimal) StringFixedCash(interval uint8) string { rounded := d.RoundCash(interval) return rounded.string(false) } // Round rounds the decimal to places decimal places. // If places < 0, it will round the integer part to the nearest 10^(-places). // // Example: // // NewFromFloat(5.45).Round(1).String() // output: "5.5" // NewFromFloat(545).Round(-1).String() // output: "550" // func (d Decimal) Round(places int32) Decimal { // truncate to places + 1 ret := d.rescale(-places - 1) // add sign(d) * 0.5 if ret.value.Sign() < 0 { ret.value.Sub(ret.value, fiveInt) } else { ret.value.Add(ret.value, fiveInt) } // floor for positive numbers, ceil for negative numbers _, m := ret.value.DivMod(ret.value, tenInt, new(big.Int)) ret.exp++ if ret.value.Sign() < 0 && m.Cmp(zeroInt) != 0 { ret.value.Add(ret.value, oneInt) } return ret } // RoundBank rounds the decimal to places decimal places. // If the final digit to round is equidistant from the nearest two integers the // rounded value is taken as the even number // // If places < 0, it will round the integer part to the nearest 10^(-places). // // Examples: // // NewFromFloat(5.45).Round(1).String() // output: "5.4" // NewFromFloat(545).Round(-1).String() // output: "540" // NewFromFloat(5.46).Round(1).String() // output: "5.5" // NewFromFloat(546).Round(-1).String() // output: "550" // NewFromFloat(5.55).Round(1).String() // output: "5.6" // NewFromFloat(555).Round(-1).String() // output: "560" // func (d Decimal) RoundBank(places int32) Decimal { round := d.Round(places) remainder := d.Sub(round).Abs() half := New(5, -places-1) if remainder.Cmp(half) == 0 && round.value.Bit(0) != 0 { if round.value.Sign() < 0 { round.value.Add(round.value, oneInt) } else { round.value.Sub(round.value, oneInt) } } return round } // RoundCash aka Cash/Penny/öre rounding rounds decimal to a specific // interval. The amount payable for a cash transaction is rounded to the nearest // multiple of the minimum currency unit available. The following intervals are // available: 5, 10, 15, 25, 50 and 100; any other number throws a panic. // 5: 5 cent rounding 3.43 => 3.45 // 10: 10 cent rounding 3.45 => 3.50 (5 gets rounded up) // 15: 10 cent rounding 3.45 => 3.40 (5 gets rounded down) // 25: 25 cent rounding 3.41 => 3.50 // 50: 50 cent rounding 3.75 => 4.00 // 100: 100 cent rounding 3.50 => 4.00 // For more details: https://en.wikipedia.org/wiki/Cash_rounding func (d Decimal) RoundCash(interval uint8) Decimal { var iVal *big.Int switch interval { case 5: iVal = twentyInt case 10: iVal = tenInt case 15: if d.exp < 0 { // TODO: optimize and reduce allocations orgExp := d.exp dOne := New(10^-int64(orgExp), orgExp) d2 := d d2.exp = 0 if d2.Mod(fiveDec).Equal(Zero) { d2.exp = orgExp d2 = d2.Sub(dOne) d = d2 } } iVal = tenInt case 25: iVal = fourInt case 50: iVal = twoInt case 100: iVal = oneInt default: panic(fmt.Sprintf("Decimal does not support this Cash rounding interval `%d`. Supported: 5, 10, 15, 25, 50, 100", interval)) } dVal := Decimal{ value: iVal, } // TODO: optimize those calculations to reduce the high allocations (~29 allocs). return d.Mul(dVal).Round(0).Div(dVal).Truncate(2) } // Floor returns the nearest integer value less than or equal to d. func (d Decimal) Floor() Decimal { d.ensureInitialized() if d.exp >= 0 { return d } exp := big.NewInt(10) // NOTE(vadim): must negate after casting to prevent int32 overflow exp.Exp(exp, big.NewInt(-int64(d.exp)), nil) z := new(big.Int).Div(d.value, exp) return Decimal{value: z, exp: 0} } // Ceil returns the nearest integer value greater than or equal to d. func (d Decimal) Ceil() Decimal { d.ensureInitialized() if d.exp >= 0 { return d } exp := big.NewInt(10) // NOTE(vadim): must negate after casting to prevent int32 overflow exp.Exp(exp, big.NewInt(-int64(d.exp)), nil) z, m := new(big.Int).DivMod(d.value, exp, new(big.Int)) if m.Cmp(zeroInt) != 0 { z.Add(z, oneInt) } return Decimal{value: z, exp: 0} } // Truncate truncates off digits from the number, without rounding. // // NOTE: precision is the last digit that will not be truncated (must be >= 0). // // Example: // // decimal.NewFromString("123.456").Truncate(2).String() // "123.45" // func (d Decimal) Truncate(precision int32) Decimal { d.ensureInitialized() if precision >= 0 && -precision > d.exp { return d.rescale(-precision) } return d } // UnmarshalJSON implements the json.Unmarshaler interface. func (d *Decimal) UnmarshalJSON(decimalBytes []byte) error { if string(decimalBytes) == "null" { return nil } str, err := unquoteIfQuoted(decimalBytes) if err != nil { return fmt.Errorf("Error decoding string '%s': %s", decimalBytes, err) } decimal, err := NewFromString(str) *d = decimal if err != nil { return fmt.Errorf("Error decoding string '%s': %s", str, err) } return nil } // MarshalJSON implements the json.Marshaler interface. func (d Decimal) MarshalJSON() ([]byte, error) { var str string if MarshalJSONWithoutQuotes { str = d.String() } else { str = "\"" + d.String() + "\"" } return []byte(str), nil } // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface. As a string representation // is already used when encoding to text, this method stores that string as []byte func (d *Decimal) UnmarshalBinary(data []byte) error { // Extract the exponent d.exp = int32(binary.BigEndian.Uint32(data[:4])) // Extract the value d.value = new(big.Int) return d.value.GobDecode(data[4:]) } // MarshalBinary implements the encoding.BinaryMarshaler interface. func (d Decimal) MarshalBinary() (data []byte, err error) { // Write the exponent first since it's a fixed size v1 := make([]byte, 4) binary.BigEndian.PutUint32(v1, uint32(d.exp)) // Add the value var v2 []byte if v2, err = d.value.GobEncode(); err != nil { return } // Return the byte array data = append(v1, v2...) return } // Scan implements the sql.Scanner interface for database deserialization. func (d *Decimal) Scan(value interface{}) error { // first try to see if the data is stored in database as a Numeric datatype switch v := value.(type) { case float32: *d = NewFromFloat(float64(v)) return nil case float64: // numeric in sqlite3 sends us float64 *d = NewFromFloat(v) return nil case int64: // at least in sqlite3 when the value is 0 in db, the data is sent // to us as an int64 instead of a float64 ... *d = New(v, 0) return nil default: // default is trying to interpret value stored as string str, err := unquoteIfQuoted(v) if err != nil { return err } *d, err = NewFromString(str) return err } } // Value implements the driver.Valuer interface for database serialization. func (d Decimal) Value() (driver.Value, error) { return d.String(), nil } // UnmarshalText implements the encoding.TextUnmarshaler interface for XML // deserialization. func (d *Decimal) UnmarshalText(text []byte) error { str := string(text) dec, err := NewFromString(str) *d = dec if err != nil { return fmt.Errorf("Error decoding string '%s': %s", str, err) } return nil } // MarshalText implements the encoding.TextMarshaler interface for XML // serialization. func (d Decimal) MarshalText() (text []byte, err error) { return []byte(d.String()), nil } // GobEncode implements the gob.GobEncoder interface for gob serialization. func (d Decimal) GobEncode() ([]byte, error) { return d.MarshalBinary() } // GobDecode implements the gob.GobDecoder interface for gob serialization. func (d *Decimal) GobDecode(data []byte) error { return d.UnmarshalBinary(data) } // StringScaled first scales the decimal then calls .String() on it. // NOTE: buggy, unintuitive, and DEPRECATED! Use StringFixed instead. func (d Decimal) StringScaled(exp int32) string { return d.rescale(exp).String() } func (d Decimal) string(trimTrailingZeros bool) string { if d.exp >= 0 { return d.rescale(0).value.String() } abs := new(big.Int).Abs(d.value) str := abs.String() var intPart, fractionalPart string // NOTE(vadim): this cast to int will cause bugs if d.exp == INT_MIN // and you are on a 32-bit machine. Won't fix this super-edge case. dExpInt := int(d.exp) if len(str) > -dExpInt { intPart = str[:len(str)+dExpInt] fractionalPart = str[len(str)+dExpInt:] } else { intPart = "0" num0s := -dExpInt - len(str) fractionalPart = strings.Repeat("0", num0s) + str } if trimTrailingZeros { i := len(fractionalPart) - 1 for ; i >= 0; i-- { if fractionalPart[i] != '0' { break } } fractionalPart = fractionalPart[:i+1] } number := intPart if len(fractionalPart) > 0 { number += "." + fractionalPart } if d.value.Sign() < 0 { return "-" + number } return number } func (d *Decimal) ensureInitialized() { if d.value == nil { d.value = new(big.Int) } } // Min returns the smallest Decimal that was passed in the arguments. // // To call this function with an array, you must do: // // Min(arr[0], arr[1:]...) // // This makes it harder to accidentally call Min with 0 arguments. func Min(first Decimal, rest ...Decimal) Decimal { ans := first for _, item := range rest { if item.Cmp(ans) < 0 { ans = item } } return ans } // Max returns the largest Decimal that was passed in the arguments. // // To call this function with an array, you must do: // // Max(arr[0], arr[1:]...) // // This makes it harder to accidentally call Max with 0 arguments. func Max(first Decimal, rest ...Decimal) Decimal { ans := first for _, item := range rest { if item.Cmp(ans) > 0 { ans = item } } return ans } // Sum returns the combined total of the provided first and rest Decimals func Sum(first Decimal, rest ...Decimal) Decimal { total := first for _, item := range rest { total = total.Add(item) } return total } // Avg returns the average value of the provided first and rest Decimals func Avg(first Decimal, rest ...Decimal) Decimal { count := New(int64(len(rest)+1), 0) sum := Sum(first, rest...) return sum.Div(count) } func min(x, y int32) int32 { if x >= y { return y } return x } func unquoteIfQuoted(value interface{}) (string, error) { var bytes []byte switch v := value.(type) { case string: bytes = []byte(v) case []byte: bytes = v default: return "", fmt.Errorf("Could not convert value '%+v' to byte array of type '%T'", value, value) } // If the amount is quoted, strip the quotes if len(bytes) > 2 && bytes[0] == '"' && bytes[len(bytes)-1] == '"' { bytes = bytes[1 : len(bytes)-1] } return string(bytes), nil } // NullDecimal represents a nullable decimal with compatibility for // scanning null values from the database. type NullDecimal struct { Decimal Decimal Valid bool } // Scan implements the sql.Scanner interface for database deserialization. func (d *NullDecimal) Scan(value interface{}) error { if value == nil { d.Valid = false return nil } d.Valid = true return d.Decimal.Scan(value) } // Value implements the driver.Valuer interface for database serialization. func (d NullDecimal) Value() (driver.Value, error) { if !d.Valid { return nil, nil } return d.Decimal.Value() } // UnmarshalJSON implements the json.Unmarshaler interface. func (d *NullDecimal) UnmarshalJSON(decimalBytes []byte) error { if string(decimalBytes) == "null" { d.Valid = false return nil } d.Valid = true return d.Decimal.UnmarshalJSON(decimalBytes) } // MarshalJSON implements the json.Marshaler interface. func (d NullDecimal) MarshalJSON() ([]byte, error) { if !d.Valid { return []byte("null"), nil } return d.Decimal.MarshalJSON() }