# securecookie [![GoDoc](https://godoc.org/github.com/gorilla/securecookie?status.svg)](https://godoc.org/github.com/gorilla/securecookie) [![Build Status](https://travis-ci.org/gorilla/securecookie.png?branch=master)](https://travis-ci.org/gorilla/securecookie) [![Sourcegraph](https://sourcegraph.com/github.com/gorilla/securecookie/-/badge.svg)](https://sourcegraph.com/github.com/gorilla/securecookie?badge) securecookie encodes and decodes authenticated and optionally encrypted cookie values. Secure cookies can't be forged, because their values are validated using HMAC. When encrypted, the content is also inaccessible to malicious eyes. It is still recommended that sensitive data not be stored in cookies, and that HTTPS be used to prevent cookie [replay attacks](https://en.wikipedia.org/wiki/Replay_attack). ## Examples To use it, first create a new SecureCookie instance: ```go // Hash keys should be at least 32 bytes long var hashKey = []byte("very-secret") // Block keys should be 16 bytes (AES-128) or 32 bytes (AES-256) long. // Shorter keys may weaken the encryption used. var blockKey = []byte("a-lot-secret") var s = securecookie.New(hashKey, blockKey) ``` The hashKey is required, used to authenticate the cookie value using HMAC. It is recommended to use a key with 32 or 64 bytes. The blockKey is optional, used to encrypt the cookie value -- set it to nil to not use encryption. If set, the length must correspond to the block size of the encryption algorithm. For AES, used by default, valid lengths are 16, 24, or 32 bytes to select AES-128, AES-192, or AES-256. Strong keys can be created using the convenience function `GenerateRandomKey()`. Note that keys created using `GenerateRandomKey()` are not automatically persisted. New keys will be created when the application is restarted, and previously issued cookies will not be able to be decoded. Once a SecureCookie instance is set, use it to encode a cookie value: ```go func SetCookieHandler(w http.ResponseWriter, r *http.Request) { value := map[string]string{ "foo": "bar", } if encoded, err := s.Encode("cookie-name", value); err == nil { cookie := &http.Cookie{ Name: "cookie-name", Value: encoded, Path: "/", Secure: true, HttpOnly: true, } http.SetCookie(w, cookie) } } ``` Later, use the same SecureCookie instance to decode and validate a cookie value: ```go func ReadCookieHandler(w http.ResponseWriter, r *http.Request) { if cookie, err := r.Cookie("cookie-name"); err == nil { value := make(map[string]string) if err = s2.Decode("cookie-name", cookie.Value, &value); err == nil { fmt.Fprintf(w, "The value of foo is %q", value["foo"]) } } } ``` We stored a map[string]string, but secure cookies can hold any value that can be encoded using `encoding/gob`. To store custom types, they must be registered first using gob.Register(). For basic types this is not needed; it works out of the box. An optional JSON encoder that uses `encoding/json` is available for types compatible with JSON. ## License BSD licensed. See the LICENSE file for details.