// Go support for Protocol Buffers - Google's data interchange format // // Copyright 2015 The Go Authors. All rights reserved. // https://github.com/golang/protobuf // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. /* Package jsonpb provides marshaling and unmarshaling between protocol buffers and JSON. It follows the specification at https://developers.google.com/protocol-buffers/docs/proto3#json. This package produces a different output than the standard "encoding/json" package, which does not operate correctly on protocol buffers. */ package jsonpb import ( "bytes" "encoding/json" "errors" "fmt" "io" "math" "reflect" "sort" "strconv" "strings" "time" "github.com/golang/protobuf/proto" stpb "github.com/golang/protobuf/ptypes/struct" ) const secondInNanos = int64(time.Second / time.Nanosecond) // Marshaler is a configurable object for converting between // protocol buffer objects and a JSON representation for them. type Marshaler struct { // Whether to render enum values as integers, as opposed to string values. EnumsAsInts bool // Whether to render fields with zero values. EmitDefaults bool // A string to indent each level by. The presence of this field will // also cause a space to appear between the field separator and // value, and for newlines to be appear between fields and array // elements. Indent string // Whether to use the original (.proto) name for fields. OrigName bool // A custom URL resolver to use when marshaling Any messages to JSON. // If unset, the default resolution strategy is to extract the // fully-qualified type name from the type URL and pass that to // proto.MessageType(string). AnyResolver AnyResolver // Encode int64, fixed64, uint64 as string IntsAsStr bool } // AnyResolver takes a type URL, present in an Any message, and resolves it into // an instance of the associated message. type AnyResolver interface { Resolve(typeUrl string) (proto.Message, error) } func defaultResolveAny(typeUrl string) (proto.Message, error) { // Only the part of typeUrl after the last slash is relevant. mname := typeUrl if slash := strings.LastIndex(mname, "/"); slash >= 0 { mname = mname[slash+1:] } mt := proto.MessageType(mname) if mt == nil { return nil, fmt.Errorf("unknown message type %q", mname) } return reflect.New(mt.Elem()).Interface().(proto.Message), nil } // JSONPBMarshaler is implemented by protobuf messages that customize the // way they are marshaled to JSON. Messages that implement this should // also implement JSONPBUnmarshaler so that the custom format can be // parsed. type JSONPBMarshaler interface { MarshalJSONPB(*Marshaler) ([]byte, error) } // JSONPBUnmarshaler is implemented by protobuf messages that customize // the way they are unmarshaled from JSON. Messages that implement this // should also implement JSONPBMarshaler so that the custom format can be // produced. type JSONPBUnmarshaler interface { UnmarshalJSONPB(*Unmarshaler, []byte) error } // Marshal marshals a protocol buffer into JSON. func (m *Marshaler) Marshal(out io.Writer, pb proto.Message) error { v := reflect.ValueOf(pb) if pb == nil || (v.Kind() == reflect.Ptr && v.IsNil()) { return errors.New("Marshal called with nil") } // Check for unset required fields first. if err := checkRequiredFields(pb); err != nil { return err } writer := &errWriter{writer: out} return m.marshalObject(writer, pb, "", "") } // MarshalToString converts a protocol buffer object to JSON string. func (m *Marshaler) MarshalToString(pb proto.Message) (string, error) { var buf bytes.Buffer if err := m.Marshal(&buf, pb); err != nil { return "", err } return buf.String(), nil } type int32Slice []int32 var nonFinite = map[string]float64{ `"NaN"`: math.NaN(), `"Infinity"`: math.Inf(1), `"-Infinity"`: math.Inf(-1), } // For sorting extensions ids to ensure stable output. func (s int32Slice) Len() int { return len(s) } func (s int32Slice) Less(i, j int) bool { return s[i] < s[j] } func (s int32Slice) Swap(i, j int) { s[i], s[j] = s[j], s[i] } type wkt interface { XXX_WellKnownType() string } // marshalObject writes a struct to the Writer. func (m *Marshaler) marshalObject(out *errWriter, v proto.Message, indent, typeURL string) error { if jsm, ok := v.(JSONPBMarshaler); ok { b, err := jsm.MarshalJSONPB(m) if err != nil { return err } if typeURL != "" { // we are marshaling this object to an Any type var js map[string]*json.RawMessage if err = json.Unmarshal(b, &js); err != nil { return fmt.Errorf("type %T produced invalid JSON: %v", v, err) } turl, err := json.Marshal(typeURL) if err != nil { return fmt.Errorf("failed to marshal type URL %q to JSON: %v", typeURL, err) } js["@type"] = (*json.RawMessage)(&turl) if b, err = json.Marshal(js); err != nil { return err } } out.write(string(b)) return out.err } s := reflect.ValueOf(v).Elem() // Handle well-known types. if wkt, ok := v.(wkt); ok { switch wkt.XXX_WellKnownType() { case "DoubleValue", "FloatValue", "Int64Value", "UInt64Value", "Int32Value", "UInt32Value", "BoolValue", "StringValue", "BytesValue": // "Wrappers use the same representation in JSON // as the wrapped primitive type, ..." sprop := proto.GetProperties(s.Type()) return m.marshalValue(out, sprop.Prop[0], s.Field(0), indent) case "Any": // Any is a bit more involved. return m.marshalAny(out, v, indent) case "Duration": // "Generated output always contains 0, 3, 6, or 9 fractional digits, // depending on required precision." s, ns := s.Field(0).Int(), s.Field(1).Int() if ns <= -secondInNanos || ns >= secondInNanos { return fmt.Errorf("ns out of range (%v, %v)", -secondInNanos, secondInNanos) } if (s > 0 && ns < 0) || (s < 0 && ns > 0) { return errors.New("signs of seconds and nanos do not match") } if s < 0 { ns = -ns } x := fmt.Sprintf("%d.%09d", s, ns) x = strings.TrimSuffix(x, "000") x = strings.TrimSuffix(x, "000") x = strings.TrimSuffix(x, ".000") out.write(`"`) out.write(x) out.write(`s"`) return out.err case "Struct", "ListValue": // Let marshalValue handle the `Struct.fields` map or the `ListValue.values` slice. // TODO: pass the correct Properties if needed. return m.marshalValue(out, &proto.Properties{}, s.Field(0), indent) case "Timestamp": // "RFC 3339, where generated output will always be Z-normalized // and uses 0, 3, 6 or 9 fractional digits." s, ns := s.Field(0).Int(), s.Field(1).Int() if ns < 0 || ns >= secondInNanos { return fmt.Errorf("ns out of range [0, %v)", secondInNanos) } t := time.Unix(s, ns).UTC() // time.RFC3339Nano isn't exactly right (we need to get 3/6/9 fractional digits). x := t.Format("2006-01-02T15:04:05.000000000") x = strings.TrimSuffix(x, "000") x = strings.TrimSuffix(x, "000") x = strings.TrimSuffix(x, ".000") out.write(`"`) out.write(x) out.write(`Z"`) return out.err case "Value": // Value has a single oneof. kind := s.Field(0) if kind.IsNil() { // "absence of any variant indicates an error" return errors.New("nil Value") } // oneof -> *T -> T -> T.F x := kind.Elem().Elem().Field(0) // TODO: pass the correct Properties if needed. return m.marshalValue(out, &proto.Properties{}, x, indent) } } out.write("{") if m.Indent != "" { out.write("\n") } firstField := true if typeURL != "" { if err := m.marshalTypeURL(out, indent, typeURL); err != nil { return err } firstField = false } for i := 0; i < s.NumField(); i++ { value := s.Field(i) valueField := s.Type().Field(i) if strings.HasPrefix(valueField.Name, "XXX_") { continue } // IsNil will panic on most value kinds. switch value.Kind() { case reflect.Chan, reflect.Func, reflect.Interface: if value.IsNil() { continue } } if !m.EmitDefaults { switch value.Kind() { case reflect.Bool: if !value.Bool() { continue } case reflect.Int32, reflect.Int64: if value.Int() == 0 { continue } case reflect.Uint32, reflect.Uint64: if value.Uint() == 0 { continue } case reflect.Float32, reflect.Float64: if value.Float() == 0 { continue } case reflect.String: if value.Len() == 0 { continue } case reflect.Map, reflect.Ptr, reflect.Slice: if value.IsNil() { continue } } } // Oneof fields need special handling. if valueField.Tag.Get("protobuf_oneof") != "" { // value is an interface containing &T{real_value}. sv := value.Elem().Elem() // interface -> *T -> T value = sv.Field(0) valueField = sv.Type().Field(0) } prop := jsonProperties(valueField, m.OrigName) if !firstField { m.writeSep(out) } if err := m.marshalField(out, prop, value, indent); err != nil { return err } firstField = false } // Handle proto2 extensions. if ep, ok := v.(proto.Message); ok { extensions := proto.RegisteredExtensions(v) // Sort extensions for stable output. ids := make([]int32, 0, len(extensions)) for id, desc := range extensions { if !proto.HasExtension(ep, desc) { continue } ids = append(ids, id) } sort.Sort(int32Slice(ids)) for _, id := range ids { desc := extensions[id] if desc == nil { // unknown extension continue } ext, extErr := proto.GetExtension(ep, desc) if extErr != nil { return extErr } value := reflect.ValueOf(ext) var prop proto.Properties prop.Parse(desc.Tag) prop.JSONName = fmt.Sprintf("[%s]", desc.Name) if !firstField { m.writeSep(out) } if err := m.marshalField(out, &prop, value, indent); err != nil { return err } firstField = false } } if m.Indent != "" { out.write("\n") out.write(indent) } out.write("}") return out.err } func (m *Marshaler) writeSep(out *errWriter) { if m.Indent != "" { out.write(",\n") } else { out.write(",") } } func (m *Marshaler) marshalAny(out *errWriter, any proto.Message, indent string) error { // "If the Any contains a value that has a special JSON mapping, // it will be converted as follows: {"@type": xxx, "value": yyy}. // Otherwise, the value will be converted into a JSON object, // and the "@type" field will be inserted to indicate the actual data type." v := reflect.ValueOf(any).Elem() turl := v.Field(0).String() val := v.Field(1).Bytes() var msg proto.Message var err error if m.AnyResolver != nil { msg, err = m.AnyResolver.Resolve(turl) } else { msg, err = defaultResolveAny(turl) } if err != nil { return err } if err := proto.Unmarshal(val, msg); err != nil { return err } if _, ok := msg.(wkt); ok { out.write("{") if m.Indent != "" { out.write("\n") } if err := m.marshalTypeURL(out, indent, turl); err != nil { return err } m.writeSep(out) if m.Indent != "" { out.write(indent) out.write(m.Indent) out.write(`"value": `) } else { out.write(`"value":`) } if err := m.marshalObject(out, msg, indent+m.Indent, ""); err != nil { return err } if m.Indent != "" { out.write("\n") out.write(indent) } out.write("}") return out.err } return m.marshalObject(out, msg, indent, turl) } func (m *Marshaler) marshalTypeURL(out *errWriter, indent, typeURL string) error { if m.Indent != "" { out.write(indent) out.write(m.Indent) } out.write(`"@type":`) if m.Indent != "" { out.write(" ") } b, err := json.Marshal(typeURL) if err != nil { return err } out.write(string(b)) return out.err } // marshalField writes field description and value to the Writer. func (m *Marshaler) marshalField(out *errWriter, prop *proto.Properties, v reflect.Value, indent string) error { if m.Indent != "" { out.write(indent) out.write(m.Indent) } out.write(`"`) out.write(prop.JSONName) out.write(`":`) if m.Indent != "" { out.write(" ") } if err := m.marshalValue(out, prop, v, indent); err != nil { return err } return nil } // marshalValue writes the value to the Writer. func (m *Marshaler) marshalValue(out *errWriter, prop *proto.Properties, v reflect.Value, indent string) error { var err error v = reflect.Indirect(v) // Handle nil pointer if v.Kind() == reflect.Invalid { out.write("null") return out.err } // Handle repeated elements. if v.Kind() == reflect.Slice && v.Type().Elem().Kind() != reflect.Uint8 { out.write("[") comma := "" for i := 0; i < v.Len(); i++ { sliceVal := v.Index(i) out.write(comma) if m.Indent != "" { out.write("\n") out.write(indent) out.write(m.Indent) out.write(m.Indent) } if err := m.marshalValue(out, prop, sliceVal, indent+m.Indent); err != nil { return err } comma = "," } if m.Indent != "" { out.write("\n") out.write(indent) out.write(m.Indent) } out.write("]") return out.err } // Handle well-known types. // Most are handled up in marshalObject (because 99% are messages). if wkt, ok := v.Interface().(wkt); ok { switch wkt.XXX_WellKnownType() { case "NullValue": out.write("null") return out.err } } // Handle enumerations. if !m.EnumsAsInts && prop.Enum != "" { // Unknown enum values will are stringified by the proto library as their // value. Such values should _not_ be quoted or they will be interpreted // as an enum string instead of their value. enumStr := v.Interface().(fmt.Stringer).String() var valStr string if v.Kind() == reflect.Ptr { valStr = strconv.Itoa(int(v.Elem().Int())) } else { valStr = strconv.Itoa(int(v.Int())) } isKnownEnum := enumStr != valStr if isKnownEnum { out.write(`"`) } out.write(enumStr) if isKnownEnum { out.write(`"`) } return out.err } // Handle nested messages. if v.Kind() == reflect.Struct { return m.marshalObject(out, v.Addr().Interface().(proto.Message), indent+m.Indent, "") } // Handle maps. // Since Go randomizes map iteration, we sort keys for stable output. if v.Kind() == reflect.Map { out.write(`{`) keys := v.MapKeys() sort.Sort(mapKeys(keys)) for i, k := range keys { if i > 0 { out.write(`,`) } if m.Indent != "" { out.write("\n") out.write(indent) out.write(m.Indent) out.write(m.Indent) } // TODO handle map key prop properly b, err := json.Marshal(k.Interface()) if err != nil { return err } s := string(b) // If the JSON is not a string value, encode it again to make it one. if !strings.HasPrefix(s, `"`) { b, err := json.Marshal(s) if err != nil { return err } s = string(b) } out.write(s) out.write(`:`) if m.Indent != "" { out.write(` `) } vprop := prop if prop != nil && prop.MapValProp != nil { vprop = prop.MapValProp } if err := m.marshalValue(out, vprop, v.MapIndex(k), indent+m.Indent); err != nil { return err } } if m.Indent != "" { out.write("\n") out.write(indent) out.write(m.Indent) } out.write(`}`) return out.err } // Handle non-finite floats, e.g. NaN, Infinity and -Infinity. if v.Kind() == reflect.Float32 || v.Kind() == reflect.Float64 { f := v.Float() var sval string switch { case math.IsInf(f, 1): sval = `"Infinity"` case math.IsInf(f, -1): sval = `"-Infinity"` case math.IsNaN(f): sval = `"NaN"` } if sval != "" { out.write(sval) return out.err } } // Default handling defers to the encoding/json library. b, err := json.Marshal(v.Interface()) if err != nil { return err } needToQuote := string(b[0]) != `"` && (v.Kind() == reflect.Int64 || v.Kind() == reflect.Uint64) && m.IntsAsStr if needToQuote { out.write(`"`) } out.write(string(b)) if needToQuote { out.write(`"`) } return out.err } // Unmarshaler is a configurable object for converting from a JSON // representation to a protocol buffer object. type Unmarshaler struct { // Whether to allow messages to contain unknown fields, as opposed to // failing to unmarshal. AllowUnknownFields bool // A custom URL resolver to use when unmarshaling Any messages from JSON. // If unset, the default resolution strategy is to extract the // fully-qualified type name from the type URL and pass that to // proto.MessageType(string). AnyResolver AnyResolver } // UnmarshalNext unmarshals the next protocol buffer from a JSON object stream. // This function is lenient and will decode any options permutations of the // related Marshaler. func (u *Unmarshaler) UnmarshalNext(dec *json.Decoder, pb proto.Message) error { inputValue := json.RawMessage{} if err := dec.Decode(&inputValue); err != nil { return err } if err := u.unmarshalValue(reflect.ValueOf(pb).Elem(), inputValue, nil); err != nil { return err } return checkRequiredFields(pb) } // Unmarshal unmarshals a JSON object stream into a protocol // buffer. This function is lenient and will decode any options // permutations of the related Marshaler. func (u *Unmarshaler) Unmarshal(r io.Reader, pb proto.Message) error { dec := json.NewDecoder(r) return u.UnmarshalNext(dec, pb) } // UnmarshalNext unmarshals the next protocol buffer from a JSON object stream. // This function is lenient and will decode any options permutations of the // related Marshaler. func UnmarshalNext(dec *json.Decoder, pb proto.Message) error { return new(Unmarshaler).UnmarshalNext(dec, pb) } // Unmarshal unmarshals a JSON object stream into a protocol // buffer. This function is lenient and will decode any options // permutations of the related Marshaler. func Unmarshal(r io.Reader, pb proto.Message) error { return new(Unmarshaler).Unmarshal(r, pb) } // UnmarshalString will populate the fields of a protocol buffer based // on a JSON string. This function is lenient and will decode any options // permutations of the related Marshaler. func UnmarshalString(str string, pb proto.Message) error { return new(Unmarshaler).Unmarshal(strings.NewReader(str), pb) } // unmarshalValue converts/copies a value into the target. // prop may be nil. func (u *Unmarshaler) unmarshalValue(target reflect.Value, inputValue json.RawMessage, prop *proto.Properties) error { targetType := target.Type() // Allocate memory for pointer fields. if targetType.Kind() == reflect.Ptr { // If input value is "null" and target is a pointer type, then the field should be treated as not set // UNLESS the target is structpb.Value, in which case it should be set to structpb.NullValue. _, isJSONPBUnmarshaler := target.Interface().(JSONPBUnmarshaler) if string(inputValue) == "null" && targetType != reflect.TypeOf(&stpb.Value{}) && !isJSONPBUnmarshaler { return nil } target.Set(reflect.New(targetType.Elem())) return u.unmarshalValue(target.Elem(), inputValue, prop) } if jsu, ok := target.Addr().Interface().(JSONPBUnmarshaler); ok { return jsu.UnmarshalJSONPB(u, []byte(inputValue)) } // Handle well-known types that are not pointers. if w, ok := target.Addr().Interface().(wkt); ok { switch w.XXX_WellKnownType() { case "DoubleValue", "FloatValue", "Int64Value", "UInt64Value", "Int32Value", "UInt32Value", "BoolValue", "StringValue", "BytesValue": return u.unmarshalValue(target.Field(0), inputValue, prop) case "Any": // Use json.RawMessage pointer type instead of value to support pre-1.8 version. // 1.8 changed RawMessage.MarshalJSON from pointer type to value type, see // https://github.com/golang/go/issues/14493 var jsonFields map[string]*json.RawMessage if err := json.Unmarshal(inputValue, &jsonFields); err != nil { return err } val, ok := jsonFields["@type"] if !ok || val == nil { return errors.New("Any JSON doesn't have '@type'") } var turl string if err := json.Unmarshal([]byte(*val), &turl); err != nil { return fmt.Errorf("can't unmarshal Any's '@type': %q", *val) } target.Field(0).SetString(turl) var m proto.Message var err error if u.AnyResolver != nil { m, err = u.AnyResolver.Resolve(turl) } else { m, err = defaultResolveAny(turl) } if err != nil { return err } if _, ok := m.(wkt); ok { val, ok := jsonFields["value"] if !ok { return errors.New("Any JSON doesn't have 'value'") } if err := u.unmarshalValue(reflect.ValueOf(m).Elem(), *val, nil); err != nil { return fmt.Errorf("can't unmarshal Any nested proto %T: %v", m, err) } } else { delete(jsonFields, "@type") nestedProto, err := json.Marshal(jsonFields) if err != nil { return fmt.Errorf("can't generate JSON for Any's nested proto to be unmarshaled: %v", err) } if err = u.unmarshalValue(reflect.ValueOf(m).Elem(), nestedProto, nil); err != nil { return fmt.Errorf("can't unmarshal Any nested proto %T: %v", m, err) } } b, err := proto.Marshal(m) if err != nil { return fmt.Errorf("can't marshal proto %T into Any.Value: %v", m, err) } target.Field(1).SetBytes(b) return nil case "Duration": unq, err := unquote(string(inputValue)) if err != nil { return err } d, err := time.ParseDuration(unq) if err != nil { return fmt.Errorf("bad Duration: %v", err) } ns := d.Nanoseconds() s := ns / 1e9 ns %= 1e9 target.Field(0).SetInt(s) target.Field(1).SetInt(ns) return nil case "Timestamp": unq, err := unquote(string(inputValue)) if err != nil { return err } t, err := time.Parse(time.RFC3339Nano, unq) if err != nil { return fmt.Errorf("bad Timestamp: %v", err) } target.Field(0).SetInt(t.Unix()) target.Field(1).SetInt(int64(t.Nanosecond())) return nil case "Struct": var m map[string]json.RawMessage if err := json.Unmarshal(inputValue, &m); err != nil { return fmt.Errorf("bad StructValue: %v", err) } target.Field(0).Set(reflect.ValueOf(map[string]*stpb.Value{})) for k, jv := range m { pv := &stpb.Value{} if err := u.unmarshalValue(reflect.ValueOf(pv).Elem(), jv, prop); err != nil { return fmt.Errorf("bad value in StructValue for key %q: %v", k, err) } target.Field(0).SetMapIndex(reflect.ValueOf(k), reflect.ValueOf(pv)) } return nil case "ListValue": var s []json.RawMessage if err := json.Unmarshal(inputValue, &s); err != nil { return fmt.Errorf("bad ListValue: %v", err) } target.Field(0).Set(reflect.ValueOf(make([]*stpb.Value, len(s)))) for i, sv := range s { if err := u.unmarshalValue(target.Field(0).Index(i), sv, prop); err != nil { return err } } return nil case "Value": ivStr := string(inputValue) if ivStr == "null" { target.Field(0).Set(reflect.ValueOf(&stpb.Value_NullValue{})) } else if v, err := strconv.ParseFloat(ivStr, 0); err == nil { target.Field(0).Set(reflect.ValueOf(&stpb.Value_NumberValue{v})) } else if v, err := unquote(ivStr); err == nil { target.Field(0).Set(reflect.ValueOf(&stpb.Value_StringValue{v})) } else if v, err := strconv.ParseBool(ivStr); err == nil { target.Field(0).Set(reflect.ValueOf(&stpb.Value_BoolValue{v})) } else if err := json.Unmarshal(inputValue, &[]json.RawMessage{}); err == nil { lv := &stpb.ListValue{} target.Field(0).Set(reflect.ValueOf(&stpb.Value_ListValue{lv})) return u.unmarshalValue(reflect.ValueOf(lv).Elem(), inputValue, prop) } else if err := json.Unmarshal(inputValue, &map[string]json.RawMessage{}); err == nil { sv := &stpb.Struct{} target.Field(0).Set(reflect.ValueOf(&stpb.Value_StructValue{sv})) return u.unmarshalValue(reflect.ValueOf(sv).Elem(), inputValue, prop) } else { return fmt.Errorf("unrecognized type for Value %q", ivStr) } return nil } } // Handle enums, which have an underlying type of int32, // and may appear as strings. // The case of an enum appearing as a number is handled // at the bottom of this function. if inputValue[0] == '"' && prop != nil && prop.Enum != "" { vmap := proto.EnumValueMap(prop.Enum) // Don't need to do unquoting; valid enum names // are from a limited character set. s := inputValue[1 : len(inputValue)-1] n, ok := vmap[string(s)] if !ok { return fmt.Errorf("unknown value %q for enum %s", s, prop.Enum) } if target.Kind() == reflect.Ptr { // proto2 target.Set(reflect.New(targetType.Elem())) target = target.Elem() } if targetType.Kind() != reflect.Int32 { return fmt.Errorf("invalid target %q for enum %s", targetType.Kind(), prop.Enum) } target.SetInt(int64(n)) return nil } // Handle nested messages. if targetType.Kind() == reflect.Struct { var jsonFields map[string]json.RawMessage if err := json.Unmarshal(inputValue, &jsonFields); err != nil { return err } consumeField := func(prop *proto.Properties) (json.RawMessage, bool) { // Be liberal in what names we accept; both orig_name and camelName are okay. fieldNames := acceptedJSONFieldNames(prop) vOrig, okOrig := jsonFields[fieldNames.orig] vCamel, okCamel := jsonFields[fieldNames.camel] if !okOrig && !okCamel { return nil, false } // If, for some reason, both are present in the data, favour the camelName. var raw json.RawMessage if okOrig { raw = vOrig delete(jsonFields, fieldNames.orig) } if okCamel { raw = vCamel delete(jsonFields, fieldNames.camel) } return raw, true } sprops := proto.GetProperties(targetType) for i := 0; i < target.NumField(); i++ { ft := target.Type().Field(i) if strings.HasPrefix(ft.Name, "XXX_") { continue } valueForField, ok := consumeField(sprops.Prop[i]) if !ok { continue } if err := u.unmarshalValue(target.Field(i), valueForField, sprops.Prop[i]); err != nil { return err } } // Check for any oneof fields. if len(jsonFields) > 0 { for _, oop := range sprops.OneofTypes { raw, ok := consumeField(oop.Prop) if !ok { continue } nv := reflect.New(oop.Type.Elem()) target.Field(oop.Field).Set(nv) if err := u.unmarshalValue(nv.Elem().Field(0), raw, oop.Prop); err != nil { return err } } } // Handle proto2 extensions. if len(jsonFields) > 0 { if ep, ok := target.Addr().Interface().(proto.Message); ok { for _, ext := range proto.RegisteredExtensions(ep) { name := fmt.Sprintf("[%s]", ext.Name) raw, ok := jsonFields[name] if !ok { continue } delete(jsonFields, name) nv := reflect.New(reflect.TypeOf(ext.ExtensionType).Elem()) if err := u.unmarshalValue(nv.Elem(), raw, nil); err != nil { return err } if err := proto.SetExtension(ep, ext, nv.Interface()); err != nil { return err } } } } if !u.AllowUnknownFields && len(jsonFields) > 0 { // Pick any field to be the scapegoat. var f string for fname := range jsonFields { f = fname break } return fmt.Errorf("unknown field %q in %v", f, targetType) } return nil } // Handle arrays (which aren't encoded bytes) if targetType.Kind() == reflect.Slice && targetType.Elem().Kind() != reflect.Uint8 { var slc []json.RawMessage if err := json.Unmarshal(inputValue, &slc); err != nil { return err } if slc != nil { l := len(slc) target.Set(reflect.MakeSlice(targetType, l, l)) for i := 0; i < l; i++ { if err := u.unmarshalValue(target.Index(i), slc[i], prop); err != nil { return err } } } return nil } // Handle maps (whose keys are always strings) if targetType.Kind() == reflect.Map { var mp map[string]json.RawMessage if err := json.Unmarshal(inputValue, &mp); err != nil { return err } if mp != nil { target.Set(reflect.MakeMap(targetType)) for ks, raw := range mp { // Unmarshal map key. The core json library already decoded the key into a // string, so we handle that specially. Other types were quoted post-serialization. var k reflect.Value if targetType.Key().Kind() == reflect.String { k = reflect.ValueOf(ks) } else { k = reflect.New(targetType.Key()).Elem() var kprop *proto.Properties if prop != nil && prop.MapKeyProp != nil { kprop = prop.MapKeyProp } if err := u.unmarshalValue(k, json.RawMessage(ks), kprop); err != nil { return err } } // Unmarshal map value. v := reflect.New(targetType.Elem()).Elem() var vprop *proto.Properties if prop != nil && prop.MapValProp != nil { vprop = prop.MapValProp } if err := u.unmarshalValue(v, raw, vprop); err != nil { return err } target.SetMapIndex(k, v) } } return nil } // Non-finite numbers can be encoded as strings. isFloat := targetType.Kind() == reflect.Float32 || targetType.Kind() == reflect.Float64 if isFloat { if num, ok := nonFinite[string(inputValue)]; ok { target.SetFloat(num) return nil } } // integers & floats can be encoded as strings. In this case we drop // the quotes and proceed as normal. isNum := targetType.Kind() == reflect.Int64 || targetType.Kind() == reflect.Uint64 || targetType.Kind() == reflect.Int32 || targetType.Kind() == reflect.Uint32 || targetType.Kind() == reflect.Float32 || targetType.Kind() == reflect.Float64 if isNum && strings.HasPrefix(string(inputValue), `"`) { inputValue = inputValue[1 : len(inputValue)-1] } // Use the encoding/json for parsing other value types. return json.Unmarshal(inputValue, target.Addr().Interface()) } func unquote(s string) (string, error) { var ret string err := json.Unmarshal([]byte(s), &ret) return ret, err } // jsonProperties returns parsed proto.Properties for the field and corrects JSONName attribute. func jsonProperties(f reflect.StructField, origName bool) *proto.Properties { var prop proto.Properties prop.Init(f.Type, f.Name, f.Tag.Get("protobuf"), &f) if origName || prop.JSONName == "" { prop.JSONName = prop.OrigName } return &prop } type fieldNames struct { orig, camel string } func acceptedJSONFieldNames(prop *proto.Properties) fieldNames { opts := fieldNames{orig: prop.OrigName, camel: prop.OrigName} if prop.JSONName != "" { opts.camel = prop.JSONName } return opts } // Writer wrapper inspired by https://blog.golang.org/errors-are-values type errWriter struct { writer io.Writer err error } func (w *errWriter) write(str string) { if w.err != nil { return } _, w.err = w.writer.Write([]byte(str)) } // Map fields may have key types of non-float scalars, strings and enums. // The easiest way to sort them in some deterministic order is to use fmt. // If this turns out to be inefficient we can always consider other options, // such as doing a Schwartzian transform. // // Numeric keys are sorted in numeric order per // https://developers.google.com/protocol-buffers/docs/proto#maps. type mapKeys []reflect.Value func (s mapKeys) Len() int { return len(s) } func (s mapKeys) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s mapKeys) Less(i, j int) bool { if k := s[i].Kind(); k == s[j].Kind() { switch k { case reflect.Int32, reflect.Int64: return s[i].Int() < s[j].Int() case reflect.Uint32, reflect.Uint64: return s[i].Uint() < s[j].Uint() } } return fmt.Sprint(s[i].Interface()) < fmt.Sprint(s[j].Interface()) } // checkRequiredFields returns an error if any required field in the given proto message is not set. // This function is used by both Marshal and Unmarshal. While required fields only exist in a // proto2 message, a proto3 message can contain proto2 message(s). func checkRequiredFields(pb proto.Message) error { // Most well-known type messages do not contain required fields. The "Any" type may contain // a message that has required fields. // // When an Any message is being marshaled, the code will invoked proto.Unmarshal on Any.Value // field in order to transform that into JSON, and that should have returned an error if a // required field is not set in the embedded message. // // When an Any message is being unmarshaled, the code will have invoked proto.Marshal on the // embedded message to store the serialized message in Any.Value field, and that should have // returned an error if a required field is not set. if _, ok := pb.(wkt); ok { return nil } v := reflect.ValueOf(pb) // Skip message if it is not a struct pointer. if v.Kind() != reflect.Ptr { return nil } v = v.Elem() if v.Kind() != reflect.Struct { return nil } for i := 0; i < v.NumField(); i++ { field := v.Field(i) sfield := v.Type().Field(i) if sfield.PkgPath != "" { // blank PkgPath means the field is exported; skip if not exported continue } if strings.HasPrefix(sfield.Name, "XXX_") { continue } // Oneof field is an interface implemented by wrapper structs containing the actual oneof // field, i.e. an interface containing &T{real_value}. if sfield.Tag.Get("protobuf_oneof") != "" { if field.Kind() != reflect.Interface { continue } v := field.Elem() if v.Kind() != reflect.Ptr || v.IsNil() { continue } v = v.Elem() if v.Kind() != reflect.Struct || v.NumField() < 1 { continue } field = v.Field(0) sfield = v.Type().Field(0) } protoTag := sfield.Tag.Get("protobuf") if protoTag == "" { continue } var prop proto.Properties prop.Init(sfield.Type, sfield.Name, protoTag, &sfield) switch field.Kind() { case reflect.Map: if field.IsNil() { continue } // Check each map value. keys := field.MapKeys() for _, k := range keys { v := field.MapIndex(k) if err := checkRequiredFieldsInValue(v); err != nil { return err } } case reflect.Slice: // Handle non-repeated type, e.g. bytes. if !prop.Repeated { if prop.Required && field.IsNil() { return fmt.Errorf("required field %q is not set", prop.Name) } continue } // Handle repeated type. if field.IsNil() { continue } // Check each slice item. for i := 0; i < field.Len(); i++ { v := field.Index(i) if err := checkRequiredFieldsInValue(v); err != nil { return err } } case reflect.Ptr: if field.IsNil() { if prop.Required { return fmt.Errorf("required field %q is not set", prop.Name) } continue } if err := checkRequiredFieldsInValue(field); err != nil { return err } } } // Handle proto2 extensions. for _, ext := range proto.RegisteredExtensions(pb) { if !proto.HasExtension(pb, ext) { continue } ep, err := proto.GetExtension(pb, ext) if err != nil { return err } err = checkRequiredFieldsInValue(reflect.ValueOf(ep)) if err != nil { return err } } return nil } func checkRequiredFieldsInValue(v reflect.Value) error { if pm, ok := v.Interface().(proto.Message); ok { return checkRequiredFields(pm) } return nil }